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Abstract

This paper investigates concerns that vertically integrated platforms like

Amazon steer demand towards their own offers via algorithmic prominence,

potentially harming consumers. On Amazon, for each product, the Buybox

prominence algorithm selects one seller to feature, influencing which offers

consumers consider. Using novel Amazon sales and Buybox (prominence)

data, we estimate a structural model capturing the effects of such algorithmic

prominence on consumer choices, seller pricing, and entry. We find that the

platform can indeed steer demand as 95% of consumers consider only the

Buybox offer. The Buybox is highly price-elastic (−21), but skews towards

Amazon’s own offers, which are featured as frequently as observably similar

offers priced 5% cheaper. Still, as consumers prefer these offers, this skew does

not amount to self-preferencing in the sense of harming consumers: consumer

surplus is roughly maximized at the estimated Amazon Buybox advantage,

which balances higher prices against showing consumers their preferred offers.
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1 Introduction

Online platforms increasingly act not merely as passive intermediaries but ac-
tively shape consumer experiences. Through search, ranking, and prominence
algorithms, platforms like Amazon direct consumer attention. These algorithms
significantly impact market outcomes: by influencing which options consumers
consider, platforms effectively steer demand, thereby shaping price competition,
merchant entry, and ultimately consumer welfare. We call this ability to steer
demand intermediation power.

In this paper, we study the implications of such intermediation power on Ama-
zon Marketplace, where Amazon both operates the platform and competes as a
seller. Vertically integrated platforms like Amazon may engage in self-preferencing
– guiding consumers preferentially towards their own offers, potentially harming
consumers (Stigler Committee on Digital Platforms 2019). This concern has drawn
scrutiny from antitrust agencies (Federal Trade Commission and State Attorneys
General 2023) and regulators (European Commission 2022; U.S. Congress 2021;
U.S. Senate Judiciary Committee 2020). Besides potential static harm from not
showing consumers their most preferred offers, proposed theories of harm from
self-preferencing include a possible stifling of merchant entry and associated
reduction in options available to consumers (Klingler et al. 2020).

Our primary research question is whether Amazon’s Buybox prominence
algorithm is self-preferencing in the sense of harming consumers. To this end, we
build and estimate a tractable structural model of intermediation power, i.e., a
platform’s ability to influence market outcomes by steering consumers. We model
demand, the platform’s prominence assignments (which steer consumers), pricing,
and entry. We combine this model with unique proprietary data linking sales and
prominence assignments on Amazon, a setting of prime regulatory concern. Our
counterfactuals speak to various theories of harm from self-preferencing and the
platform’s tradeoff between attracting merchants and fostering competition.

Platforms commonly set defaults for consumers through their search (Yu
2024), ranking (Ursu 2018), and prominence algorithms (Johnson, Rhodes, and
Wildenbeest 2023). Economists have increasingly become aware that these defaults
can influence consumer choice. We thus model consumers as having one of two
kinds of consideration sets (Ben-Akiva and Boccara 1995; Manski 1977): either
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they consider all available options, or they only consider the prominent offer and
the outside option. Through its influence on consideration sets, the platform’s
prominence algorithm affects seller pricing (as in, e.g., Dinerstein et al. 2018), as
well as how many and which firms enter.

We estimate this model using high-frequency Amazon data via maximum
likelihood (prominence algorithm and demand) and GMM (pricing and entry).
Variation in offer characteristics (and corresponding prominence assignments)
identifies how Amazon decides which offers to make prominent. Similarly, varia-
tion in choice sets and observed sales identify consumer demand parameters. The
fraction of consumers who consider all offers (as opposed to only the prominent
offer) is identified by the difference in sales between offers eligible for prominence
and those not eligible. The estimated demand structure and variation in merchant
prices identify marginal costs. Finally, the model of variable profits implied by the
estimated demand system and variation in market size identify fixed costs.

We find that Amazon can steer demand and indeed has a large influence over
it as 95% of consumers consider only the Buybox offer. The Buybox is highly
price-elastic (−21), but skews towards Amazon’s own offers, which are featured as
frequently as observably similar offers priced 5% cheaper.

After recovering the prominence algorithm, demand, and cost parameters, we
simulate market outcomes under alternative prominence algorithms, proceeding
in two stages: first with fixed prices and entry (short run), then allowing price
and entry adjustments (long run). We consider counterfactuals that examine (i)
the value of search guidance, (ii) how the price sensitivity of prominence affects
consumer surplus, and (iii) self-preferencing, i.e., whether the frequency with
which Amazon promotes its own offers is consumer surplus maximizing.

First, we evaluate the impact of search guidance by comparing the status quo to
a benchmark in which unsophisticated consumers only consider the cheapest offer.
While stylized, this counterfactual illustrates how search guidance shapes market
outcomes. We find that the algorithm increases consumer surplus in the short run,
mostly because of better matching of consumers to high-quality offers. Relative to
our benchmark, the algorithm also increases producer surplus in the short run,
which leads to additional entry and lower prices in the long run. Although these
effects are modest, together they reinforce the increase in consumer surplus.

Second, we further investigate the prominence algorithm’s price sensitivity,
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addressing concerns that the platform, which makes revenue from ad valorem inter-
mediation fees, may be insufficiently incentivized to foster competition. Contrary
to such concerns, we find that increasing the algorithm’s price sensitivity would
lower consumer surplus. Indeed, our evaluation suggests that the platform’s price
sensitivity is approximately optimal from a consumer surplus perspective.

Third, we investigate the question at the core of our paper: is Amazon self-
preferencing in the sense of harming consumers? To answer this question, we
explore how the frequency at which Amazon currently promotes its own offers
compares to that which would maximize consumer surplus. While more frequent
promotion of Amazon offers leads it to raise prices, it also allows more consumers
to consider Amazon’s offers, which they strongly prefer. We find that at the
estimated promotion frequency, these two effects approximately balance, so that
Amazon is not self-preferencing in the sense of harming consumers: increasing
the Amazon promotion frequency would lead to consumer surplus losses from
increased prices, but lowering it would lead to losses from worse matching of
consumers to their preferred offers. The current promotion frequency is thus
approximately consumer surplus maximizing.

2 Literature Review

This paper speaks to three strands of literature in industrial organization and the
economics of digitization.

First, we contribute to a large literature on price competition and search frictions
in online markets. Despite theoretically small search costs, online markets still
exhibit substantial price dispersion (Bailey 1998; Smith and Brynjolfsson 2001; Baye,
Morgan, and Scholten 2004; Einav et al. 2015), possibly because consumers do not
search efficiently (De Los Santos, Hortaçsu, and Wildenbeest 2012; Malmendier
and Lee 2011; Schneider 2016; Stigler 1961) and consider only a subset of available
alternatives (Goeree 2008). Given these frictions, platforms face a trade-off between
incentivizing sellers to compete on price and guiding consumers to their preferred
products (Dinerstein et al. 2018). Efficient search technologies can lead to high offer-
level elasticities, prompting retailers to obfuscate product characteristics to hinder
comparison and raise profits (Ellison and Ellison 2009). Finally, personalized
prominence as in recommender systems can also affect pricing incentives (Calvano
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et al. 2025). While addressing similar platform-design issues, this literature rarely
models entry or a firm competing on its own platform.

Second, we contribute to the literature on the downstream conduct of vertically
integrated firms. In traditional markets, concerns include foreclosure (Crawford
et al. 2018), raising prices of rivals’ products (Luco and Marshall 2020) or altering
products to disadvantage competitors (McManus et al. 2020). In digital markets, the
focus shifts to steering, with self-preferencing defined as “platform [prominence
assignments that] deliver outcomes below [a] frontier that maximizes a weighted
sum of seller and consumer surplus” (Reimers and Waldfogel 2023). Such steering
may negatively affect consumers through higher commissions and prices (e.g.,
Hagiu, Teh, and Wright 2022; Teh and Wright 2022).

Third, spurred partly by Khan (2016), our empirical setting – the Amazon
marketplace – has emerged as a central focus for studies of price competition
and search on platform marketplaces (Ciotti and Madio 2023; Crawford et al.
2022; Gutiérrez 2021; Lam 2021), including research on steering (Chen and Tsai
2023; Farronato, Fradkin, and MacKay 2025; Hartzell and Haupt 2025; Raval
2022; Waldfogel 2024). Etro (2022) provides a survey. Our paper establishes that
algorithmic steering exists and is of first-order relevance to consumer welfare.

We highlight two particularly relevant studies. Farronato, Fradkin, and MacKay
(2025) experimentally alter Amazon brand visibility in search results, finding con-
sumer surplus would fall if these brands were removed. We, however, investigate
a distinct steering dimension (Buybox prominence), which has garnered separate
regulatory scrutiny (U.S. Senate Judiciary Committee 2020). Raval (2022) also
investigates the Buybox, finding steering towards Amazon. Our work, using sales
data, analyzes not just the presence but also the welfare effects of this steering.

3 Who does the Amazon Buybox feature?

Our empirical setting is Amazon Marketplace, a platform permitting third parties
to list offers alongside Amazon’s. In 2020, about 1.9 million merchants utilized
this opportunity (aboutamazon.com). Their listings were responsible for 60%
of sales on this marketplace, yielding estimated merchant profits of $25 billion
(aboutamazon.com). However, with 28% of purchases completed within three
minutes, consumers use little time to explore their options (aboutamazon.com).
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(a) Occupied Buybox. (b) Canceled Buybox.

Figure 1: The Buybox.
Notes: The “Amazon Buybox”. Amazon chooses which seller is assigned the sale if the buttons inside the rectangle are used.
In (a), a seller has been assigned; while in (b), no seller has been featured.

This speed suggests that search, ranking, and prominence algorithms play a role
in shaping consumers’ choices.

E-commerce platforms typically employ multiple such algorithms. However,
investigating algorithm behavior is challenging when products differ on unob-
served dimensions. We exploit a unique feature of our setting to sidestep this
issue: because Amazon requires sellers to list their offers on the correct product
page, a specific product often has multiple offers.

When multiple offers are present, the platform automatically designates at most
one offer as prominent, i.e., featured in the “Buybox” (Figure 1). This offer does
not vary across consumers.2 Often, Amazon “rotates” prominence between sellers
of sufficiently high quality to “avoid stock-outs” and encourage sellers to “delight
their customers” and “get good feedback” (feedvisor.com). Prominence is critical
for sellers, as the “vast majority of sales” go through the “Buybox” (europa.eu),
with estimates from 80% (U.S. Senate Judiciary Committee 2020) to 98% (Federal
Trade Commission et al. 2023, p. 29).

Econometrically, this algorithm offers an ideal setting to study the impact of
platform-guided consumer search. In particular, a market will be a specific product
— e.g., “Clarks Men’s Bushacre 2 Chukka [Shoes], Dark Brown, Size 8.5.” Once
decided on this product, consumers must choose between various offers. For

2In rare situations, two offers are prominent: one for Prime customers, and one for non-Prime
customers. We drop these rare cases.

5



instance, the merchant “Zappos” offers these shoes for US$57.68 and will deliver
them via Fulfillment by Amazon (FBA), a “fulfillment service that allows businesses
to use Amazon to store, pick, pack, and ship customer orders” (amazon.com).
Alternatively, “BHFO” charges only US$54.99 but does not offer FBA. Below, we
examine the influence of prominence on how consumers choose between such
offers. Crucially, in this choice, all options share all product characteristics –
obviating the need for complex demand models to explain substitution.

Amazon Marketplace is a key setting to evaluate antitrust concerns. Economists
worry that “defaults can direct a consumer to the choice that is most profitable
to the platform” (Stigler Committee on Digital Platforms 2019). Indeed, sellers
complain that competing with Amazon is challenging, as the platform frequently
assigns the Buybox to itself. A Senate investigation concluded that it “can give
itself favorable treatment [and] has done so through its control over the Buy Box”
(U.S. Senate Judiciary Committee 2020). The investigation sparked the introduction
of a draft bill in Congress prohibiting self-preferencing (U.S. Congress 2021).

Recent allegations also claim Amazon modified its search algorithms to favor
its own products (wsj.com), though evidence is mixed (Farronato, Fradkin, and
MacKay 2023, 2025; Waldfogel 2024). These claims suggest seller concerns about
the Buybox may be justified. However, Amazon’s general counsel counters that
“the Buy box is aimed to predict what customers want to buy” and that “[the
platform applies] the same criteria whether [the merchant is] a third-party seller
or Amazon” (thehill.com).

3.1 Data

We procured extensive, high-frequency data that includes prices, 19,409,013 promi-
nence assignments, and 803,849 sales on 47,403 products sold by 63,620 merchants
from 2018-08-26 until 2020-03-23. We provide summary statistics and discuss our
data in more detail in Appendix A.

Our data are sourced from a company that offers “repricing” services; therefore,
these data arise directly from Amazon’s APIs. For each monitored product,
Amazon automatically notifies the company when there is any change in the
number or content of the offers (e.g., a price hike or the entry of a new competitor).
Importantly, we see which offer Amazon assigns prominence to just after any such
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Figure 2: Evidence of Canceled Prominence (Binned Scatter Plots).
Notes: This binscatter illustrates the relationship between canceled prominence and the price of the cheapest offer on a
product relative to MSRP; dots are binned averages and the grey shadow provides a 95% confidence band. The underlying
observations are product-date pairs for which the lowest-priced offer is priced between 50% below and 50% above MSRP.
The left panel shows the unresidualized relationship; the right panel depicts the relationship after residualizing on product
fixed effects. In both panels, as the cheapest offer’s markup over MSRP increases, canceled prominence becomes more likely.

change. However, prominence assignments may change frequently, and we receive
no notification when the only change is which offer is assigned prominence.

We further observe, via a different API, all sales for a single merchant in each
market — the one using the repricing company’s services. These data come with
their own challenges (e.g., having to proxy for the market size), which we address
with our model and estimation strategy in Sections 4 and 5.3

3.2 Canceled Prominence

We first investigate when the platform cancels prominence, leaving the Buybox
empty as in Figure 1b. This helps us understand the platform’s incentives in
shaping the prominence algorithm.

While an empty Buybox may lower sales, the threat of canceled prominence
can discipline prices. Indeed, before 2019, Amazon’s US marketplace required its
third-party sellers to offer lower prices than on other platforms (theverge.com).
These “most-favored nations clauses” (MFN) were deemed anticompetitive by
European antitrust agencies, leading Amazon to drop them in Europe by 2013
(German Competition Authority 2013, 2015; UK Competition Authority 2013).
Following similar pressure, Amazon also dropped the US MFN clauses by 2019.

3Yet, to our knowledge, no past papers employ sales data across many merchants to estimate
demand on Amazon Marketplace. Instead, employing sales ranks as a proxy has become common.
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Fraction of
Prominence Assignments

Overall FBA Amazon
Amazon Offer Exists 19.25% 19.83% 100.00%
FBA Offer Exists 97.07% 100.00% 100.00%
Prominent Offer Is ...

Lowest Priced 40.60% 40.24% 45.27%
Second Lowest Priced 26.42% 26.73% 30.05%
Highest Feedback Count 29.32% 29.52% 66.67%
Highest Feedback Rating 19.17% 19.15% 8.90%
Fastest Shipping 25.71% 25.74% 31.22%
Lowest Priced FBA 50.31% 51.83% 64.96%
FBA 85.98% 88.57% 97.18%
Amazon 12.83% 13.22% 66.67%
Lowest Fastest Shipping 51.92% 52.36% 65.46%

Table 1: Determinants of Prominence.
Notes: Each entry in this table gives the fraction of prominence assignments satisfying the criteria listed in the first column
for various subsets of the data. The second column (“Overall”) is based on the entire set of observations. The third column
(“FBA”) employs only observations for which there is an offer that is fulfilled by Amazon and the fourth column (“Amazon”)
uses only observations for which there is an offer by Amazon itself. All ties are broken randomly.

Nonetheless, canceled prominence may achieve similar effects to explicit MFN.
To demonstrate, we combine data on the price of the lowest-priced offer on product
j at date τ with data on Buybox ownership and information on the manufacturer’s
suggested retail price (MSRP), which we use as a proxy for the price at which a
product could be obtained outside of Amazon. Figure 2 displays a binned scatter
plot of Buybox cancellation versus the percentage distance to MSRP. As expected,
the cancellation fraction increases with the cheapest offer’s price. However, the
increase is sharper if the offer price exceeds MSRP.

3.3 Prominence Descriptives

How does the platform choose which offer to feature? Table 1 investigates deter-
minants of prominence. For instance, the prominent offer is the cheapest in 41% of
cases. However, Fulfilled by Amazon (FBA) offers are given prominence in 86% of
cases, possibly because they dispatch much faster. Most interestingly, on products
where Amazon has an offer, its offer is featured 67% of the time.
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Figure 3: More Determinants of Prominence.
Notes: Panel (a) shows the result of regressing a prominence dummy on binary characteristics (continuous characteristics
were binarized by cutting at the median) without any further controls. Panels (b)-(d) show results from regressing the same
prominence dummy on various offer characteristics – normalized by the product’s best offer’s value – while controlling for
offer fixed effects. Standard errors are clustered at the product level (but confidence intervals are too small to be visible).

Figure 3 provides more detail on how offer characteristics matter. The top-left
panel shows coefficients from bivariate regressions of a prominence dummy on
(binarized) offer characteristics; continuous characteristics are split at the median.
This figure shows that being sold by Amazon most strongly predicts prominence;
however, as the underlying regressions are bivariate, this could reflect Amazon’s
offers being more competitively priced or of higher quality. FBA offers are also
more likely featured, while high price, low feedback count, and slow dispatch
times all correlate with lower prominence likelihood.

The remaining panels further investigate these three continuous characteristics.
Acknowledging the prominence decision’s discrete-choice nature, they normalize
each characteristic relative to the product’s best offer (e.g., expressing price as a
percentage distance relative to the cheapest offer for the same product). These
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Norm. Sales Norm. Sales/Market Size

(1) (2) (3) (4) (5)
Amazon Offer? -38.72*** -26.81*** -28.10*** -23.61*** -11.50***

(9.978) (1.567) (1.687) (1.590) (1.931)
# Comp. Merchants -0.761*** -1.591*** -1.190***

(0.176) (0.176) (0.155)
Divide by Mkt. Size No Yes Yes Yes Yes
Controls No No No Yes Yes
Offer Fixed Effects No No No No Yes
Observations 19,409,013 19,409,013 19,409,013 19,409,013 19,408,472

Table 2: Effect of Amazon’s Presence on Third-Party Sales.
Notes: We regress normalized sales for the observed merchant on a dummy for whether there is an Amazon offer on
the same market (i.e., product page and time.) Sales are normalized by dividing by their mean and multiplying by 100;
regression coefficients can be interpreted as percentage point changes in sales. The first column uses raw sales data (showing
that the effect is not due to our market size proxy); other columns use sales divided by market size (increasing power.)
The # Comp. Merchants row counts the number of merchants pricing within 5% of the cheapest offer (for comparison, on
average Amazon prices 7% above the cheapest offer.) Controls refer to price divided by MSRP, whether the offer is fulfilled
by Amazon, shipping time, and the logarithm of the number of reviews. The effect of an Amazon offer on sales is negative,
large, and statistically significant, even when controlling for the number of competitive merchants.

panels report coefficients from regressing a prominence dummy on evenly spaced
bins of the normalized characteristic, controlling for offer fixed effects. Price
is an important determinant, but even offers 20% above the minimum are still
featured 7% of the time. Similarly, feedback count and especially dispatch time
matter but are not solely decisive. The dispatch time effect centers almost entirely
on whether shipping is instant. Crucially, these results do not control for other
characteristics when looking at the impact of any given characteristic – in other
words, the coefficients should not be understood as causal effects. Below, we
estimate a discrete-choice model to disentangle the various factors influencing
prominence, and provide assumptions under which the results of that model can
be interpreted as causal.

Having shown that Amazon frequently features its own offers, we now turn to
demand: is it true that Amazon offers are preferred by consumers? To investigate
this question without access to sales data for Amazon offers – Amazon is not a
client of the repricing company that is our data source – we turn to the idea that
a strong preference for Amazon offers would be reflected in reduced sales for
the observed merchants whenever Amazon is present on a market. We indeed
find such a pattern in Table 2, which provides model-free evidence that Amazon’s
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presence casts a large shadow on the observed merchant’s sales by regressing
the observed merchant’s normalized sales on an Amazon presence dummy (the
normalization allows interpreting the coefficient as a percentage sales change).
We caution that this shadow could be caused either by a consumer preference
for Amazon offers or by consumers only considering prominent offers (which we
have just seen may favor Amazon offers). To disentangle these two possibilities,
we next build a model of how consumers choose in the presence of steering by a
prominence algorithm.

4 Model

To disentangle consumer preferences from the influence of prominence on choices,
and to assess the welfare impact of alternative prominence algorithm designs, we
build a model of consumer choice and within-platform price competition and
entry. This model lets us examine whether designers of online marketplaces
derive intermediation power from choosing their prominence algorithms. Our
approach focuses on the platform’s ability to guide search by influencing customers’
consideration sets (Ben-Akiva and Boccara 1995; Manski 1977).

This section proceeds as follows. First, we specify demand: consumers have
nested logit preferences with endogenous consideration sets. Second, we consider
how the platform’s prominence algorithm, also a nested logit, maps offer charac-
teristics to a prominence assignment. Finally, we specify supply. On each market,
potential sellers observe their own marginal costs and market-level fixed costs,
make entry decisions, and then compete in a standard Bertrand-Nash pricing
game. Crucially, sellers anticipate that demand depends on prominence, which
hence shapes their incentives to enter and compete.

4.1 Consumer choice

Demand follows a standard nested-logit framework except that consumers form
endogenous consideration sets (Dinerstein et al. 2018; Goeree 2008).

There are two types of consumers. A fraction ρ are “sophisticated.” Sophis-
ticated consumers ignore the prominence assignment and evaluate all available
options J ∪ {0}. The remaining 1 − ρ consumers are “unsophisticated.” Unso-
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phisticated consumers consider only the prominent offer jr ∈ J and the outside
option. Thus, the prominence algorithm chooses which offer the unsophisticated
consumers evaluate.4 If the algorithm chooses not to make any offer prominent,
unsophisticated consumers take their outside option.

In each market t, both types of consumers have preferences over the alternatives
available to them. Their mean utilities for alternative j depend on its characteristics
xjt, price pjt and unobserved quality ξjt:

δjt = x′jtβ − αt pjt + ξjt. (1)

When discussing identification below, we impose further restrictions on ξjt: our
main estimates utilize ξjt ≡ 0, but we also explore robustness to a more flexible
specification. We also normalize the mean utility of the outside option to zero:
δ0t = 0.

By contrast to the usual setup where markets are repeated observations of the
same market over time (Berry, Levinsohn, and Pakes 1995) or different geographic
markets with nearly identical alternatives (Nevo 2001), in our setting markets are
distinct product pages. Hence, the alternatives offered differ markedly across
markets, and so could price sensitivity. We assume that consumers evaluate price
relative to MSRP. If Rt is the MSRP in market t, we set αt = α/Rt, reflecting the
idea that a $0.50 price difference matters for a $10 pen but not a $1,000 laptop.

The flipside of alternatives differing markedly across markets is that within
markets, the inside options available to consumers are very similar: they all
correspond to getting the same product, albeit delivered via different channels
at varying speed from sellers of varying reputation. Hence, plausibly, the inside
alternatives are more substitutable with each other than with the outside option,
which includes buying other products on the platform, buying the same product
on some other platform or offline, and not buying the product at all.

To reflect this difference in substitutability, we partition the set of products
as {0} ∪ Jt and let g = 1 be the index of the nest of inside options. The utility
consumer i derives from alternative j in market t is then

vijt = δjt + ζig(j)t + (1 − λ)ϵijt, (2)

4Note that, on Amazon Marketplace, consumers that do not explicitly click through to the offer
listing are indeed never informed of the availability or characteristics of non-prominent offers.
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where ϵijt is distributed i.i.d. Type-1 Extreme Value, and ζig(j)t is common to
all options in the same nest. The distribution of ζig(j)t can be specified such
that ζig(j)t + (1 − λ)ϵijt has a Generalized Extreme Value distribution, yielding a
nested-logit model (Cardell 1997; McFadden 1978).

Consumers choose the utility-maximizing option in their consideration sets.
Therefore, given a prominent offer jr, the probability that a consumer chooses
product j ̸= 0 in market t depends on a prominence dummy yr

jt ≡ 1{j = jrt}:

sjt(yr
jt; θd) = ρ ×

[
∑k∈Jt exp(δkt/λ)

]λ

1 +
[
∑k∈Jt exp(δkt/λ)

]λ
×

exp(δjt/λ)

∑k∈Jt exp(δkt/λ)

+(1 − ρ)× yr
jt ×

exp(δjt)

1 + exp(δjt)
, (3)

where θd = (β, α, λ) collects the parameters of the demand model.
We assume that the number of customers making a choice in market t (i.e., the

number of arrivals) has a Poisson distribution with mean Mt.5 By the thinning
property of the Poisson distribution (Blitzstein and Hwang 2014, Theorem 13.12.13),
the number of customers choosing j on market t is then also Poisson with mean
Mt × sjt(yr

jt; θd).

4.2 Prominence Algorithm

A prominence algorithm maps offer characteristics to a prominence assignment
jr ∈ J or – if prominence is cancelled as in Section 3.2 – the null assignment
jr = {0}. While, in general, prominence may vary by consumer, this is not the
case in our empirical application. Hence, we model the prominence algorithm as
solving exactly one discrete choice problem for each market.

The inner workings of the prominence algorithm are not known. But whether it
is a machine learning algorithm that maximizes an objective such as total sales or
a simpler rule-based routine, what matters to us is how the prominence algorithm
shapes demand, pricing, and entry. To this end, the important question is how
often sellers can expect their offers to be promoted, and how this depends on
their own and their rivals’ characteristics, including price and whether they are

5By contrast, if we assumed that exactly Mt consumers arrived, our model would not be able to
rationalize markets with more sales than the average number of consumer arrivals.
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competing with Amazon. As with consumer choice, we capture this dependence
parsimoniously with a nested-logit model. To the extent that the algorithm trades
off various goals (e.g. sales profits vs seller surplus), counterfactuals should be
understood as altering the weight given to these goals (e.g. lowering the weight on
sales profits could correspond to lowering the Amazon prominence advantage).

The mean utility δr
jt of each inside alternative includes observable characteristics

xjt, price pjt and the econometrician-unobservable quality ξr
jt:

δr
jt = x′jtβ

r
t − αr pjt

Rt
+ ξr

jt. (4)

As with demand, when discussing identification below, we impose further restric-
tions on ξr

jt: our main estimates utilize ξr
jt ≡ 0, but we also explore robustness to

a more flexible specification. We also normalize the mean utility of the outside
option to zero: δ0t = 0.

Whether due to deliberate randomization or mistakes in evaluation, we assume
prominence decisions are based on a shocked version vr

jt of this mean utility. In
particular, shocks follow a nested logit structure like with consumer choice.6 Like
before, all inside alternatives share a common nest, and the outside option is in
a separate nest; unlike before, this nesting here reflects the fact that cancelling
prominence is likely to lower intermediation fee revenue, and hence is qualitatively
different from just assigning prominence to a different offer. As the shock structure
is perfectly analogous to consumer choice, we will not repeat the details here.
Instead, writing the nesting coefficient of the Buybox as λr, we skip ahead to the
implied probability of prominence:

rjt(θ
r) =

[
∑k∈Jt exp(δr

kt/λr)
]λr

1 +
[
∑k∈Jt exp(δr

kt/λr)
]λr ×

exp(δr
jt/λr)

∑k∈Jt exp(δr
kt/λr)

, (5)

where θr = (βr, αr, λr) collects the parameters of the prominence model.

6One might assume Amazon’s prominence algorithm is deterministic, implying the variance of the
logit shock ϵ is (near) zero. However, industry sources and our web scraping indicate stochasticity
via “Buybox rotations”: the platform shares arrivals among similarly priced merchants. Therefore,
ϵ contains said rotations and other idiosyncratic factors affecting prominence.
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4.3 Firm Choices

Finally, we specify a model of entry and price competition. Each market t ∈ T is
associated with a fixed cost Ft and a set of potential entrants j ∈ Nt.

Fixing a market t, each putative seller j draws a type ωj ∼ G(·)7 and chooses
a pair (χj, pj) consisting of an entry and a pricing strategy. The entry rule χj :
Ij → {0, 1} maps a player’s pre-entry information set Ij into her entry decision,
whereas the pricing rule pj : I ′ → R+ maps the post-entry information set I ′ into
the price the seller will charge.

As merchants receive only a share ϕ of the revenue they generate due to
intermediation fees, and assuming constant marginal costs, seller j’s payoff is

πj(ω, χ, p) = ∑
t∈{t̃|j∈Nt̃}

χjt ×
[(

ϕpjt − cjt
)

sjt(rjt(ω, p), ω, p)Mt − Ft
]

, (6)

where sjt maps the vectors of types and prices into demand and Mt denotes
expected monthly arrivals in market t. Our solution concept is Bayesian Nash
Equilibrium.

We proceed by stating several assumptions for tractability:

Assumption 1 (Separable Markets). Each firm is a potential entrant in at most 1 market:
Nt ∩Ns = ∅ for t ̸= s.

Assumption 2 (Full Information Pricing). After entry, each seller knows the identities,
cost draws, and quality draws of its opponents when playing the pricing game: I ′

j ≡ I ′ =

(ω, F).

Assumption 3 (Platform Offer Maximizes Short-Run Profits). On each market, the
platform’s decision whether to list its first-party offer is taken as given. The price of the
platform offer is set market-by-market to maximize the profits accruing to the said offer.

Assumption 4 (Blind Entry). Before entry, each seller observes only its own marginal
cost draw and the common fixed cost of entry: Ij = (cj, F).

Assumption 5 (Symmetric Entry). χ∗
j (c, F) = χ∗

k(c, F) for all j, k ∈ N and c, F ∈ R+.

7A seller’s type ω collects her marginal cost draw, attractiveness to the prominence algorithm
(including ξr), and attractiveness to consumers (including ξ).
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The separable-markets assumption allows us to solve for equilibrium market-
by-market, easing the computational burden. In our empirical application, firms
are small and rarely specialize in related products, so cross-market cannibalization
is of secondary importance.

Full-information pricing is standard: successful entrants play a Bertrand-Nash
game (Anderson, De Palma, and Thisse 1992) and internalize the effect of promi-
nence when setting prices,

∂sj

∂pj
= ρ

∂ssophisticated
j

∂pj
+ (1 − ρ)

 ∂rj

∂pj
sunsophisticated

j + rj
∂sunsophisticated

j

∂pj

 . (7)

By influencing
∂rj
∂pj

, the prominence algorithm therefore partially determines the
price elasticity sellers face — exactly where the platform’s power to guide consumer
search manifests in our model.

As for the platform offer maximizing short-run profits, we make this assump-
tion for tractability and because it is an important benchmark for our analysis.
Appendix G.2 explores how results change if Amazon’s prices are fixed in the
counterfactuals.

Given a selection rule for the pricing equilibrium,8 Assumptions 4 and 5 ensure
unique, computationally tractable equilibria at the entry stage. In each market,
a set of potential entrants (sellers) N face a fixed cost of entry F. Each potential
entrant independently decides whether to enter after observing information set
Ij = {cj, F}. This assumption consists of two parts. Firstly, in the spirit of Roberts
and Sweeting (2013) and to avoid the classic equilibrium multiplicity problems, we
deprive sellers of knowledge about offers other than their own.9 Secondly, before
entry, each firm’s only information about its type is its cost. Because (we estimate
that) price is the most important determinant of prominence, this assumption will

8In our simulations, pricing equilibria always exist but are not necessarily unique as firms
differentiate by targeting sophisticated or unsophisticated consumers. When multiple equilibria
exist, we select one by starting our price fixed-point search with a lower price for the seller
possessing the highest prominence algorithm attractiveness. Further details are in Appendix C.1.

9We make this assumption to avoid equilibrium multiplicity, as is common in games of strategic
substitutes (e.g., Tamer 2003). We believe this assumption is innocuous because most sellers in our
sample are small and anonymous; they are unaware of their competitors before entry. Even if they
know each other’s identities, turnover is high. Therefore, merchant entry is best modeled with
firms expecting to play against random draws from the distribution of potential opponents.
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only slightly affect our results.
Each firm enters if and only if its expected profits from entering exceed the

fixed cost F. Given our assumptions, this expectation depends only on a firm’s
own unit cost draw. As its expected profits are declining in its own unit cost
cj, each firm best responds in cutoff strategies: χj(cj) = 1{cj < c∗j }. Thus, an
equilibrium can be characterized by a vector (c∗1, . . . , c∗n). Assumption 5 further
restricts attention to symmetric equilibria. Thus, all (ex-ante identical) firms share
the same (ex-ante) cutoff c∗. Conditional on a selection rule for pricing equilibria,

Proposition 1. The entry game has a unique symmetric equilibrium in cutoff strategies.

This unique cutoff c∗ exactly balances expected gross profits against fixed costs
if other firms enter according to our putative cutoff rule. That is, each firm enters
if and only if it draws a marginal cost cost weakly below c∗.

5 Identification and Estimation

We now discuss identification and estimation of θ = (θr, θd, θs) where θr =

(βr, αr, λr) govern the prominence algorithm; θd = (β, α, λ, ρ) govern demand;
and θs = (θF, θc) govern the fixed F and marginal cost c components of supply.
We estimate θr and θd via maximum likelihood, and θs via GMM.

We estimate our model using data covering 19,409,013 prominence assignments
and 803,849 sales across 47,403 products and 63,620 merchants from 2018-08-26
to 2020-03-23. Recall that we observe individual-level sales data and discrete
choice data for prominence assignments for each market t, which we define to be
a “product (web)page”-notification time pair (w, τ) for the purpose of prominence
and demand estimation.10 In each market, the alternatives Jt are the various offers
on the same product page. This market definition allows us to sidestep estimation
of potentially complex preferences over product characteristics: such characteristics
do not vary across offers for the same product, so they cancel out in the discrete
choice problem. Nevertheless, the offers may still differ in characteristics such as
dispatch speed.

10When considering pricing and entry, we aggregate to a “product page”-month.
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5.1 The Prominence Algorithm

5.1.1 Main Model: No Unobserved Quality

We make the identifying assumption of no unobserved prominence quality, i.e.,

Assumption 6. There is no unobserved prominence quality: ξr
jt ≡ 0.

Intuitively, this assumption reflects the fact that alternatives in our model are
offers, and markets are product-webpages. Hence, product characteristics (like
color) cancel when comparing across alternatives within a market, leaving only
offer characteristics (like dispatch speed) to matter in the prominence choice. How-
ever, we observe essentially all offer characteristics that the consumer observes,
including dispatch speed, seller rating, whether an offer is fulfilled by Amazon
(FBA), whether an offer is sold by Amazon, and the offer’s price. These character-
istics are accounted for in xjt and do not need to be captured by the residual ξr

jt.
Assumption 6 hence mainly rules out consumers using the seller’s name to draw
inferences about seller quality (e.g., based on prior experiences with the seller) not
predicted by observables. Such a violation seems unlikely except in the case of
Amazon (the merchant), which we control for by including an Amazon dummy.
The remaining third-party sellers on this marketplace are numerous and often less
established, and Amazon’s interface makes it hard to directly search for products
sold by a particular seller.

We estimate the prominence parameters θr = (βr, αr, λr) via standard maximum-
likelihood; the estimator θ̂r solves

max
θr

lr(θr) =
T

∑
t=1

∑
j∈Jt∪{0}

yr
jt ln rjt(θ

r), (8)

where yr
jt is an indicator for whether offer j was prominent in market t and rjt(θ

r)

is the model-predicted prominence probability from equation (5) but with ξr
jt ≡ 0.

We use maximum likelihood instead of generalized method of moments for
two reasons. First, our data is high-frequency and highly disaggregated; Berry’s
(1994) inversion would suffer severe zero-share bias (Gandhi, Lu, and Shi 2023;
Quan and Williams 2018). Second, Amazon Marketplace is highly dynamic, with
frequent price changes and merchant turnover, so the time dimension provides
rich, plausibly exogenous variation – especially given the frequent delegation
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of pricing to algorithms reacting to competitors’ prices. Aggregation, the usual
strategy to address zero-share bias, would thus smooth precisely over the most
informative variation.

We briefly discuss identification, which is standard (Train 2009) and also
confirmed by Monte Carlo exercises in Appendix D.1. The assumption that ξr

jt ≡ 0
implies that characteristics are exogenous (i.e., E[ξr

jt|xjt] = E[ξr
jt]). Hence, the

weights βr that the algorithm places on various offer characteristics are identified by
the frequency at which offers with these characteristics are featured. Furthermore,
the same assumption implies that prices are exogenous (i.e., E[ξr

jt|pjt] = E[ξr
jt]),

and hence the price sensitivity αr is identified by the covariance between an offer’s
price and prominence. Finally, it implies that the covariance between unobserved
quality across offers within the "inside options" nest is zero (i.e., Cov(ξr

jt, ξ
r
kt) = 0

for k ̸= j), and hence the nesting coefficient λr is identified by variation in choice
sets—e.g., variation in the offer number.

5.1.2 Robustness: Time-Invariant Unobserved Quality

To address concerns that price may be endogenous with respect to unobserved
quality (i.e., that E[ξr

jt|pjt] ̸= E[ξr
jt]), we exploit the panel structure of our data.

In estimation, a market t will be a product-webpage w at a particular time τ, i.e.
t ≡ (w, τ). Hence, we can re-estimate the prominence model under:

Assumption 7. Unobserved prominence quality is time-invariant: ξr
jwτ ≡ ξjw.

This alternative assumption is plausible as essentially all variation in offer
characteristics is cross-sectional rather than temporal.11 Furthermore, it explicitly
allows for some endogeneity in prices (i.e., E[ξr

jw|pjt] ̸= E[ξr
jw]). To operationalize

the assumption, we employ offer fixed-effects to concentrate out any time-invariant
sources of price endogeneity.12 However, we find below that doing so barely moves
the estimate of price sensitivity, suggesting that – as expected – unobserved quality
is only a minor concern in our empirical setting.

11The R2 from regressing time until dispatch, log feedback count, being fulfilled by Amazon,
and being sold by Amazon on offer fixed-effects are 0.96, 1.00, 0.98, and 1.00 respectively.

12The details of introducing these fixed-effects into a maximum likelihood procedure without
causing an incidental parameters problem are relegated to Appendix B.1. Essentially, we apply
Chamberlain’s (1980) conditional logit approach to the conditional logit model itself (see also Rasch
1960, 1961). This approach yields an estimator that exclusively exploits within-offer price variation
to identify the price coefficient αr.
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5.2 Consumer Choice

5.2.1 Main Model: No Unobserved Quality

We make the identifying assumption of no unobserved demand quality, i.e.,

Assumption 8. There is no unobserved demand quality, i.e., ξjt ≡ 0.

As for prominence, this assumption reflects the fact that alternatives in our
model are offers, and markets are product webpages; see Section 5.1.1.

We estimate the demand parameters θd = (β, α, λ, ρ) by maximum likelihood.
However, instead of observing one discrete choice per market, we observe the total
number of sales yd

jo(t),t for one merchant jo(t) on each market t. If we observed
arrivals, we could immediately move on to the likelihood implied by our discrete
choice model. As we do not observe arrivals, we utilize our assumption that arrivals
are Poisson distributed, which implies that sales are also Poisson distributed. To
make progress, we need to know the expected number of arrivals Mt on each
market t ≡ (w, τ); to reduce noise, we assume arrival rates do not vary over time,
so Mw,τ ≡ Lw,τ ×Arrw where Lw,τ measures a market’s duration in months (which
is observed) and Arrw is the number of monthly arrivals. We exploit data on each
market t’s sales rank, translating monthly average ranks into monthly predicted
sales using estimates from AMZScout, a “leading market intelligence provider
for Amazon sellers” (Gutiérrez 2021).13 We average across months to generate
average monthly predicted sales for product webpage w. To turn predicted sales
into arrivals Ârrw, we use data on conversion rates of sponsored product listings,
predicting each webpage’s conversion rate based on its suggested retail price
(higher prices convert at lower rates).14

Conditional on the number of arrivals M̂t and the true prominence dummy yr
jt,

sales yjt for offer j in market t follow a Poisson distribution with mean M̂tsjt(yr
jt; θd).

Here, sjt(yr
jt; θd) is as specified in Equation (3) but with unobserved quality ξjt set

13These estimates are based on the power law relationship between sales and ranks that has been
confirmed repeatedly in the academic literature (Brynjolfsson, Hu, and Smith 2006; Chevalier and
Goolsbee 2003; Chevalier and Mayzlin 2006) but also account for the steepening of the slope in
the tail that recent papers have found (Brynjolfsson, Hu, and Simester 2011). We are grateful to
German Gutierrez for providing us with these data.

14The predicted conversion rates range from 10.86% (at a retail price of 99.75$) to 20.56% (at
$5.29). We are grateful to Chuan Yu for providing us with these data.
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to zero. We thus have a log-likelihood of

T

∑
t=1

Jt

∑
j=1

{
yj,t ln

(
M̂tsj,t(yr

jt; θd)
)
− M̂tsj,t(yr

jt; θd)− ln Γ(yj,t + 1)
}

, (9)

where the last term is constant in θd and hence dropped below.
As written, we cannot utilize this likelihood because (i) we only observe the

sales yjt for one merchant jo(t) on each market t, and (ii) yr
jt is only observed at

the time of the last change to the set of offer characteristics {xjt, pjt}j∈Jt and may
have changed since then.15

We now tackle these issues in turn. First, we note that thinning a Poisson
process by classifying each arrival via a multinomial draw yields independent
Poisson processes for each category (i.e. merchant j) (He and Wang 1990). Hence,
we can factor out and integrate over the unobserved merchants’ sales to yield an
integrated likelihood

T

∑
t=1

{
yjo(t),t ln

(
M̂tsjo(t),t(y

r
jo(t),t; θd)

)
− M̂tsjo(t),t(y

r
jo(t),t; θd)

}
. (10)

Crucially, via sjo(t),t(yr
jo(t),t; θd), this integrated likelihood still depends on the full

set of offer characteristics {xjt}j∈Jt including for j ̸= jo(t) – e.g., the likelihood can
account for sales being lower for observed offers when they are in the presence of
an attractively priced unobserved competitor by raising the coefficient on price.

Second, we address potential measurement error in the prominence dummy yr
jt,

which may be stale by the time of sale. Following the measurement error literature,
we use an instrument that satisfies an exclusion restriction—affecting the outcome
only through the mismeasured covariate (Carroll et al. 2006). In a maximum
likelihood framework, this instrument informs the conditional distribution of the
(true) prominence dummy, which we integrate over to obtain a full information
maximum likelihood (FIML) estimator (Wooldridge 2003, Section 15.7.3).

We operationalize this idea by combining (i) the previous nested-logit promi-
nence model, and (ii) an instrument zjt for the prominence dummy that is excluded

15In auxiliary analyses graciously provided by Andreas Haupt, we find suggestive evidence that
within fifteen minutes of the most recent change, the prominence assignment had already changed
again in 52.39% of cases. Most of these high-frequency changes are unobserved by us as we only
observe prominence assignments when there is a change to the offer set (e.g., a price change).
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from consumer preferences: prominence eligibility (with zjt = 1 if offer j is el-
igible to be featured on market t). Jointly, these yield a predicted probability
r̂jt = zjt × rjt(θ̂

r) that offer j is assigned prominence on market t. We then integrate
over the remaining uncertainty in prominence to yield a new log-likelihood.16

Putting everything together, the maximum likelihood estimator θ̂d solves

max
θd

ld(θd) =
T

∑
t=1

ln
(

r̂jo(t),t exp(ℓd
1,t) + (1 − r̂jo(t),t) exp(ℓd

0,t)
)

,

where ℓd
r,t = yjo(t),t ln

(
M̂tsjo(t),t(r; θd)

)
− M̂tsjo(t),t(r; θd) for r ∈ {0, 1},

(11)

i.e., ℓd
1,t and ℓd

0,t are the log-likelihood contributions when the observed offer jo(t)
is, respectively, prominent or not. Appendix D.3 confirms that this estimator
performs well in Monte Carlo simulations.

Formally, the first-order conditions of the MLE require

T

∑
t=1

[
P(rjo(t),t = 1|yjo(t),t)

(
yjo(t),t

sjo(t),t(1; θd)
− M̂t

)
∂sjo(t),t(1; θd)

∂θd

+ P(rjo(t),t = 0|yjo(t),t)

(
yjo(t),t

sjo(t),t(0; θd)
− M̂t

)
∂sjo(t),t(0; θd)

∂θd

]
= 0,

(12)

where P(rjo(t),t = 1|yjo(t),t) is the posterior probability of the observed offer being
prominent given r̂jo(t),t (the prior) and yjo(t),t (the number of units sold).17

Intuitively, the estimator tries to find parameters such that the weighted av-
erage prediction errors are orthogonal to the derivative of predicted shares with
respect to the parameters. In practice, this means that consumer preferences over
characteristics β and price α are identified from the covariance between an offer’s
sales and its value of that characteristic relative to its competition. For instance,
if the observed offer never sells when a faster dispatch offer exists, we infer high
dispatch speed sensitivity. Similarly, the preference for Amazon offers is identified

16As prominence is binary, its (conditional) distribution is fully pinned down by the predicted
probability r̂jt. By contrast, for a continuous variable, we would require full knowledge of the
conditional distribution, not just the conditional mean. Formally, this procedure yields a consistent
estimator if r̂jt is well-calibrated, i.e., E[yr

jt|r̂jt] = r̂jt. This calibration is established by Figure 7a in
Appendix E. Practically, the procedure performs well in Monte Carlo simulations in Appendix D.3.

17Formally, P(rjo(t),t = 1|yjo(t),t) =
r̂jo(t),t exp(ℓd

1,t)

r̂jo(t),t exp(ℓd
1,t)+(1−r̂jo(t),t) exp(ℓd

0,t)
, and analogously for rjo(t),t = 0.
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by the shadow that the presence of an Amazon offer casts on the sales of observed
merchants: if these sales are lower whenever there is an Amazon offer, and if this
pattern cannot be explained by prominence alone, then consumers must prefer
Amazon offers—the underlying variation used is the same as in Table 2.

We caution that this identification strategy is not without limitations. First, if
Amazon systematically enters markets with negative market-wide demand shocks,
we will attribute the lower sales on those markets to a preference for Amazon
offers. However, such counterproductive entry behavior seems unlikely18, and in
any case we control for time-invariant market-wide shifters in the main demand
table. Second, one may worry that we cannot separately identify the preference
for Amazon offers from the substitutability between Amazon offers and observed
offers: if observed offers are much more substitutable with Amazon offers than
with other offers, even a slight preference for Amazon offers will cast a large
shadow on the observed merchant’s sales. Conversely, strong preference with
lower substitutability could cast the same shadow. However, such a difference
in substitutability would be identified by differing responses of the observed
offer’s sales to the price of the Amazon offer versus other offers. Furthermore, it
seems unlikely that Amazon offers are particularly substitutable with observed
offers relative to other offers. Third, with unsophisticated consumers, attributing
preference correctly (to consumers vs. the prominence algorithm) requires a
consistent estimate of unsophisticated consumers’ prevalence; underestimating
this prevalence could misattribute prominence advantage to consumer preference.

To identify the fraction of sophisticated consumers ρ, the procedure described
above effectively instruments offer prominence with prominence eligibility, which
sellers must purchase with a small monthly payment.19 The estimator thus effec-
tively targets Cov(yd

jo(t),t, r̂jt) where r̂jt = rjt(θ̂
r)× zjt is the predicted probability

of being featured from the prominence model rjt(θ̂
r) multiplied by a dummy for

prominence eligibility zjt. Instrumenting in this way avoids attenuation bias from
outdated prominence assignments, and also avoids potential bias from correla-

18If Amazon enters positive shock markets, we instead underestimate the Amazon preference.
Hence, a correction would not affect our conclusion that Amazon is not self-preferencing.

19To be eligible, a seller must sign up for a professional account and pay a monthly subscription
fee of $39.99 (junglescout.com), then become a Featured Merchant by “hit[ting] certain targets on
metrics like excellent customer ratings, competitive pricing, low order defect rate, and more... [but]
Amazon won’t give you specific numbers” (repricerexpress.com).
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tion between ξjt and ξr
jt (Donnelly, Kanodia, and Morozov 2023; Ursu 2018): the

prominence model assumes ξr
jt ≡ 0 and hence r̂jt does not contain ξr

jt.
The instrument is relevant by construction (first stage F = 8,367). Exclusion

could be violated if an unobserved offer characteristic valued by consumers is also
required for eligibility, i.e., if E[ξjt|xjt, zjt] ̸= E[ξjt|xjt]. For instance, if merchants
build a reputation for on-time delivery with customers and on-time performance
matters for prominence eligibility, we may misattribute the reputation-driven
increase in sales to being featured. However, recall that we observe essentially all
offer characteristics that consumers observe, including seller feedback, dispatch
speed, whether an offer is fulfilled by Amazon, whether an offer is sold by Amazon,
and its price. Hence, as before, the only plausible channel for endogeneity goes
through customers drawing inferences from seller’s names as they remember
a particular seller’s performance (e.g. for on-time delivery); this seems highly
unlikely given the setting.

Finally, as with prominence, the nesting coefficient λ is identified by the slope
at which sales decline as a function of the number of offers.

5.2.2 Robustness: Time-Invariant Unobserved Quality

To address the common concern that price may be endogenous with respect to
quality (i.e., that E[ξjt|pjt] ̸= E[ξjt]), we exploit the panel structure of our data. In
estimation, a market t is defined as a product webpage w observed at a particular
time τ, i.e. t ≡ (w, τ). Hence, we can re-estimate the demand model under:

Assumption 9. Unobserved demand quality is time-invariant, i.e., ξjwτ ≡ ξjw.

As with prominence, this assumption is plausible because observed offer
characteristics are essentially time-invariant. In Appendix B.2, we show how the
high-frequency nature of the data allows us to condition out fixed-effects even
when only one merchant’s sales are observed. In particular, we focus on pairs
of periods between which all except the observed merchant’s offer characteristics
(including prices) stay fixed. Then, we compare the observed merchant’s sales
in periods where her price is high to her sales in periods where her price is
low. However, because sales are infrequent, this comparison mostly captures
substitution between the observed merchant and the outside option.
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5.3 Estimating wholesale and fixed costs

To ensure there are no negative realizations of costs, we assume both fixed and
marginal costs follow a lognormal distribution, i.e.,

Assumption 10 (Costs DGP). For all third-party offers,

[
(cjt)j∈Nt

Ft

]
=

[
(θc

0+x′tθ
c
x)(ϵ

c
jt)j∈Nt

(θF
0 +x′tθ

F
x )ϵ

F
t

]
, with

([
(ϵc

jt)j∈Nt

ϵF
t

]
|xt

)
∼ LogN

(
0,
[

θc
σI|Nt | 0

0 θF
σ

])
.

(13)
For the platform’s offer,

cAmz,t = (θc
0,Amz + x′tθ

c
x,Amz)ϵ

c
Amz,t, with ϵc

Amz,t ∼ LogN(0, θc
σ,Amz). (14)

This parameterization explicitly allows Amazon to face marginal costs that
differ from those of third-party sellers. We collect the supply parameters in
θs = (θc, θF) where θc = (θc

0, θc
x, θc

σ, θc
0,Amz, θc

x,Amz, θc
σ,Amz) and θF = (θF

0 , θF
x , θF

σ).
Identification of θc follows the usual approach (Bresnahan 1981). Together, the

demand model, the assumption of Nash-Bertrand competition, and variation in
prices jointly identify wholesale cost parameters. In particular, the mean price
across markets provides a moment that speaks to θc

0; its covariance with market
characteristics xt gives us θc

x; and the within-market price variance tells us about θc
σ.

Their analogs for the platform offer speak to θc
0,Amz, θc

x,Amz, and θc
σ,Amz respectively.

Meanwhile, identification of θF follows conventional practice in static entry
models (Berry and Reiss 2007). At the entry stage, fifteen potential entrants
simultaneously decide whether to enter, each knowing only its own wholesale
costs and the fixed entry cost. Variation in the expected variable profits implied
by the demand model—especially as driven by market size—allows us to draw
conclusions about the fixed cost parameters θF. The mean number of entrants is
informative about θF

0 ; its covariance with market characteristics tells us about θF
x ;

its variance speaks to θF
σ .

In theory, marginal cost shocks across (merchant, market) pairs ϵc
jt may depend

on fixed cost shocks for that market ϵF
t . Following the literature on empirical two-

stage games20, the covariance matrix in Assumption 10 imposes that, conditional

20See, e.g., Eizenberg (2014), Holmes (2011), Houde, Newberry, and Seim (2023), Kuehn (2018),
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on observables (e.g., MSRP, number of arrivals), marginal cost shocks are mean
independent of fixed cost shocks. Conditioning on observables rules out many
possible sources of correlation.21

As pricing and entry decisions are unlikely to be made at higher frequencies—
and as θc and θF do not need to be identified from high-frequency variation—we
aggregate to the monthly level, defining a market t as a product webpage in a
given month.

We estimate θ̂s by GMM. In particular, the estimated θ̂s sets the simulated
moment vector Ĝ(θs) close to zero:

θ̂s = arg min
θs∈Θs

Q(θs) = Ĝ(θs)′WĜ(θs), Ĝ(θs) =
1
T

T

∑
t=1

(yt − Ê ft(θs)). (15)

The weight matrix W is obtained by bootstrapping a covariance matrix of the
underlying moments. The moments yt = (yF

t , yc
t) are partitioned into “fixed cost”

and “wholesale cost” moments respectively, with Ê ft(θs) their simulated model
analogs, where the expectation E here is taken over simulation draws. The “fixed
cost” moments yF

t are specified as

yF
t = ( J̄t, Var(Jt), Jt × At, Jt × Zln(MSRP),t, (1{Jt = j})j=1,2,14,15)

′, (16)

which includes the mean and variance of the number of entrants across markets;
the mean, across markets, of the number of entrants on a product multiplied
by its market size At; an analogous mean but with standardized MSRP (in logs)
Zln(MSRP),t; and finally the fractions of markets with 1, 2, 14, and 15 entrants.

Meanwhile, the wholesale cost moments, for both third-party offers and Ama-
zon offers, take the form

yc
t = (µ̂P, δ̂P, σ̂P, µ̂P,AMZ, δ̂P,AMZ, σ̂P,AMZ)

′ (17)

Rossetti (2018), and Wollmann (2018). The exposition in Bontemps, Gualdani, and Remmy (2023)
is particularly salient in our setting: “Introducing such a correlation is possible in principle, but
numerically challenging, because it would break the separation between the two stages in the
estimation procedure. We view the absence of correlation as a reasonable simplification.”

21Appendix D.4 performs Monte Carlo simulations to validate that (1) our procedure recovers the
true parameters if the data-generating process (DGP) is correctly specified; and that (2) if wholesale
cost shocks depend on fixed cost shocks in Assumption 10 other than through observables xt, we
can still recover consistent estimates of fixed costs but those for wholesale costs may be inconsistent.
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and are obtained via indirect inference. In both the data and model-simulated
markets, we first obtain σ̂P by computing the standard deviation of log prices
across offers. Next, we obtain σ̂P,AMZ by computing the standard deviation of the
price of the Amazon offer, relative to MSRP, across markets. Finally, for (µ̂P, δ̂P),
we run regressions (at the market level) predicting mean third-party offer prices as
a function of a constant and product-level covariates, i.e.,

p̄t = µ̂P + xP
t
′
δ̂P + ϵP

t , (18)

and we minimize the distance between the model-implied regression coefficients
and the data-implied ones. The covariates for third-party offers only include the
MSRP (standardized across products). To identify (µ̂P,AMZ, δ̂P,AMZ), we run an
analogous regression for first-party offers, but include the price of the market’s
cheapest offer (possibly Amazon’s own offer) as an additional covariate. This
relationship between Amazon’s price and the cheapest offer’s price is a useful
proxy for the intensity of competition.22

Estimation is computationally intensive. To evaluate the objective for a given
guess of θs, we must solve the entry game for each market. However, to solve a
single entry game, we must find its associated wholesale cost cutoff c∗t . Doing
so requires computing equilibrium profits under many candidate wholesale cost
values. Finally, we must evaluate many candidate parameters θs during our
outer GMM optimization procedure. We employ several techniques to lighten the
computational burden; see Appendix C for technical details.

6 Results

6.1 Prominence Algorithm

We present results in Table 3, noting that all reported coefficients on offer char-
acteristics have been normalized by dividing through by λ (i.e., they measure
preferences between inside offers). While (1) assumes a (non-nested) logit model
(i.e., imposes λ = 1), (2) and (3) employ a nested logit model. Finally, (4) uses the

22While this moment is not strictly necessary for identification, in practice, we find that it
improves power: it helps the estimator distinguish prices that are low because of low costs from
prices that are low due to competition.
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(1) (2) (3) (4)

Price / MSRP -7.60 -15.24 -25.17 -21.18
(0.162) (0.316) (0.790) (1.577)

Time to Ship (in Days) -1.10
(0.090)

100 × Log(# Feedback) 5.23
(0.545)

FBA 2.91
(0.161)

Amazon 1.14
(0.073)

Inside 9.55 4.39 4.39
(0.201) (0.128) (0.118)

Nesting (λ) 0.14 0.09
(0.009) (0.006)

Offer FE? ✗ ✗ ✗ ✓

Impl. Elasticity -6.87 -13.30 -20.92 n/a

Table 3: Prominence Algorithm Estimation Results.
Notes: Estimates from maximum-likelihood estimation on 0.1% sample. Reported coefficients measure the effect of price
(normalized by the MSRP), an extra day of time until dispatch, a percentage increase in feedback count, an offer being
fulfilled by Amazon, an offer being sold by Amazon, the mean utility of the inside option (relative to the outside option),
and the amount of nesting (with λ = 1 corresponding to no nesting.) The reported elasticity is the average across all offers,
and cannot be computed for (4) as we condition out FE. Standard errors are clustered at the product level.

weaker identifying Assumption 7, yielding estimates robust to arbitrary correlation
of an offer’s average unobserved quality with its price.

We begin by discussing the price sensitivity of prominence assignments. First,
correlation in the inside goods’ utilities matters: moving from logit (1) to nested
logit (2) doubles the estimated price coefficient. Second, including observable
quality measures in (3) further increases our estimate. Third, however, additionally
including offer fixed effects in (4) does not affect our estimate much.

We emphasize a few additional findings about our preferred model (3). First,
the implied price elasticity for the prominence algorithm is very high, at about
−21. This finding is corroborated by our discussions with sellers on the platform.23

Second, as λ̂ ≈ 0.09 < 1, Amazon considers offers more substitutable with each
other than with the outside option. This is expected, as the outside option yields
no intermediation fees. Finally, quality also matters. FBA offers have a 12% price

23Even more intriguingly, on its seller interface, Amazon explicitly tells the seller which of her
“listings [...] are priced not more than 5% above the Buybox.” This statement is consistent with our
finding that offers priced more than 5% above the cheapest offer are (almost) never featured.
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advantage, and Amazon’s offers have an additional advantage equivalent to 39% of
the FBA advantage (on top of being FBA themselves). Slow shippers are penalized:
a one-day longer dispatch time carries a penalty similar to Amazon’s advantage.

In the Appendix, we assess the out-of-sample fit of our preferred model (3)
(Figure 7, Appendix E.1) and conclude it fits well. We also explore heterogeneity
(Table 14, Appendix F.1), finding the algorithm similar across categories but
potentially less price-sensitive for Office and Pet products.

6.2 Consumer Choice

Our consumer choice estimation results are in Table 4, noting that all reported
coefficients on offer characteristics have been normalized by dividing through by
λ (i.e., they measure preferences between inside offers).

The first five columns restrict ρ = 1; i.e., they assume all consumers are
sophisticated. By comparing models (1) to (2) and (3) to (4), we conclude that the
inclusion of observed quality covariates only slightly moves the estimated price
coefficient. This finding suggests there is little endogeneity of price with respect to
these covariates, implying that correlation between unobserved quality and price
is also likely small.

To further assess this hypothesis, we compare a specification with offer-level
fixed effects (5) to those without (1–4); model (5) is the sole model that uses the
alternative identifying Assumption 9 (instead of 8). Just as for prominence, we find
that including fixed effects if anything reduces the estimated price sensitivity.24

The remaining columns (6)-(8) freely estimate ρ, and agree that ρ̂ < 1, i.e., a
substantial fraction of unsophisticated consumers only considers the prominent
offer. However, (6) uses observed prominence assignments yr

jt in place of predicted
r̂jt; as expected, the resulting measurement error severely attenuates the estimate
of the fraction of unsophisticated consumers. When correctly accounting for the
measurement error in (7), our estimate of the fraction of sophisticates falls from
71% to 5%. Intuitively, this estimate should be compared with the fraction of
product-page visits in which a customer clicks through to the Offer Listing Page;
while we do not observe that statistic, the European Commission states that “the

24Amongst the non-nested models, (1) and (2) yield higher estimates of price sensitivity than (5).
This result goes opposite to what we would expect with the usual endogeneity concern (where
price is positively correlated with quality).
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No Unsophisticates With Unsophisticates
(1) (2) (3) (4) (5) (6) (7) (8)

Price / MSRP -1.47 -1.50 -9.70 -12.40 -0.58 -11.89 -2.90 -2.99
(0.118) (0.097) (0.535) (0.576) (0.195) (0.628) (0.397) (0.376)

Time To Ship (in Days) -0.37 -0.80 -0.63 -0.05 -0.07
(0.053) (0.070) (0.079) (0.161) (0.152)

100 × Log(# Feedback) 8.66 -5.63 -5.68 -0.67 -0.83
(1.330) (1.617) (1.875) (3.219) (3.116)

FBA 0.30 1.50 1.38 1.39 1.37
(0.119) (0.158) (0.179) (0.247) (0.230)

Amazon 5.27 2.34 2.65 1.56 1.66
(0.159) (0.194) (0.218) (0.267) (0.270)

Inside -4.15 -4.74 -2.99 -2.97 -2.97 -3.28 -3.30
(0.134) (0.207) (0.089) (0.082) (0.081) (0.070) (0.076)

× Ever Has Amz 2.22
(2.709)

Nesting (λ) 0.11 0.10 0.09 0.04 0.04
(0.013) (0.009) (0.010) (0.041) (0.038)

Frac. Soph. (ρ) 0.71 0.05 0.05
(0.009) (0.003) (0.003)

Offer FE? ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

Prom. Elig. Instrument? ✗ ✓ ✓

Elasticity (Fix. Prom.)
-1.56 -1.60 -8.68 -10.63 n/a

-9.55 -0.98 -1.01

Elasticity (Endog. Prom.) -11.99 -13.70 -13.72

Table 4: Demand Estimation Results.
Notes: Estimates from maximum-likelihood estimation; (6) uses observed prominence dummies yr

jt in place of predicted r̂jt;
(7) and (8) use predicted r̂jt and hence account for measurement error in prominence. Reported coefficients have already
been normalized by dividing through by λ (i.e., they measure preferences between inside offers.) They measure the effect of
price (normalized by the MSRP), an extra day until dispatch, a percentage increase in feedback amount, an offer being
fulfilled by Amazon, the mean utility of the inside option, and the change in that mean utility for markets which Amazon
ever is present on. λ is the nesting coefficient for sophisticated consumers and ρ is the fraction of consumers that are
sophisticated. Elasticity Fix. Prom. refers to the average price elasticity of demand assuming that price does not influence
consideration sets; Elasticity Endog. Prom. allows for this influence. All standard errors are clustered at the product level.

percentage of total customer visits to the page where the customer clicked on the
link to the Offer Listing Page remained below [0-10]% in the period 2017-2019”
(European Commission 2022, p.10), giving us confidence in our estimate from (7).

Finally, specification (8) allows the average attractiveness of inside options to
differ depending on whether an Amazon offer is ever present on a product. This
is a robustness check to ensure our estimated preference for Amazon is not driven
by market-level unobservables. This is the case: if anything, the preference for
Amazon offers strengthens in this robustness check.

Our preferred specification (7) incorporates our consideration set model (leav-
ing ρ unrestricted) and observable quality covariates. The price elasticity is -14,
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OLS/2SLS MLE

Naive Estimation 51.18% 41.7%
(1.69%) (0.53%)

Buybox Eligibility Instrument 90.74% 96.09%
(6.05%) (0.22%)

FTC Allegation ≈98%

Table 5: Fraction of Sales via Buybox.
Notes: This table reports the implied fraction of sales via the Buybox. Column 1 estimates this using linear regressions
of sales on Buybox status, with and without an eligibility instrument. Column 2 uses our discrete choice model – after
estimation, we compare predicted choice probabilities when exogenously varying Buybox status. The fraction is calculated
by taking the ratio of predicted sales when in the Buybox to average sales, multiplied by the fraction of time the Buybox is
occupied.

but drops to just -1 if prominence is held fixed as prices vary (i.e., if ∂rjt/∂pjt is
artificially set to zero). This large difference stems from our estimate that 95% of
customers consider only the prominent offer. However, customers considering all
offers view them as close substitutes (λ̂ ≈ 0.04).25 Regarding non-price characteris-
tics, we seem underpowered to detect quality effects beyond FBA and Amazon
offers themselves, which are roughly equal: being sold by Amazon is worth 1.12
times as much as being FBA (intriguingly, for prominence this ratio was only 0.39).
Again, note that Amazon offers are also FBA, so both advantages accrue to them.

In the appendix, we assess the out-of-sample fit of our preferred model (Figure
8, Appendix E.1), concluding that it fits well. We also explore heterogeneity (Table
14, Appendix F.1), finding that markets with more offers have more sophisticated
consumers, and that the Amazon advantage is strongest for products in the Pet,
Baby, and Office categories.

6.2.1 Demand Estimates Validate Regulatory Findings

The European Commission notes that (in France and Germany) “sales made
directly through the Featured Offer accounted for [70-80] to [80-90] % of the

25If the price associated with the outside option (including competing products on Amazon)
covaries with offer prices beyond what is captured by the MSRP, this estimate may be biased
downwards, which may lead us to under-state the importance of entry below. However, as the
inside alternatives are all offers for the same product, it is natural to expect a lot of correlation in
the utility of the inside options.
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overall sales” (European Commission 2022, p.10).26 For the US, the FTC claims
that “[n]early 98% of all purchases on Amazon are made using [...] the Buy Box”
(Federal Trade Commission and State Attorneys General 2023, p.29).

We validate our estimates against these claims in Table 5. To this end, we
estimate the causal effect of prominence on sales in two ways. First, we regress
sales on Buybox status—both directly ("Naive Estimation") and using Buybox
eligibility as an instrument. Each regression yields a reduced-form estimate of the
effect of Buybox status on sales, allowing us to compute

Fraction of Sales via Buybox =
Ê(sales|Buybox)× P̂r(Buybox)

Ê(sales)
(19)

to obtain the values in Column 1 of Table 5.
Second, we use our discrete choice model of consumer behavior, comparing

model-predicted consumer choice probabilities when an offer is prominent to those
when it is not. Averaging over offers, this yields two structural estimates of the
effect of prominence on sales (one instrumented, one not), again allowing us to
compute (19), but now using the predicted choice probabilities from our model.

Omitting the instrument severely attenuates the share of sales that go through
the Buybox. However, with our eligibility instrument, even the linear model
recovers a sales fraction of 91%. By imposing the structure of our model, we
estimate that 96% of sales on Amazon “go through” the Buybox – very close to the
FTC’s figure of “[n]early 98%” (ibid.).

6.3 Marginal and Fixed Costs

We present fixed and marginal cost estimates in Table 6. For successful entrants, we
find wholesale costs of 81% of the manufacturer’s suggested retail price (MSRP),
which seems plausible for small retailers. Crucially, our estimates suggest Amazon
faces significantly lower marginal costs than third-party merchants.

We estimate an interquartile range for fixed costs of [US$0.37, US$3.05]. While
these fixed costs appear small, they are consistent with the low barriers to entry
on Amazon. For example, 59% of merchants set prices above MSRP, with 15%

26The EC also cites Amazon’s own claim that “90%+ of sales [are] com[ing] from the Buy Box”
(European Commission 2022, p.10).
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Parameter Estimate Std. Err. Description
θF

0 4.676 (0.026) mean of log fixed costs
θF

R 2.047 (0.049) .. interacted with MSRP
θF

σ −0.043 (0.060) variance of log fixed cost
θc

0 2.863 (0.044) marginal cost mean shift
θc

R 0.734 (0.006) marginal cost coefficient on MSRP
θc

σ 0.154 (0.002) variance of marginal cost
θc

0,Amz 3.743 (0.056) Amazon: marginal cost mean shift
θc

R,Amz 0.457 (0.012) Amazon: marginal cost coefficient on MSRP
θc

σ,Amz 0.109 (0.007) Amazon: variance of marginal cost

Table 6: Fixed and Marginal Cost Parameters.
Notes: This table displays wholesale and fixed cost parameter estimates obtained from our SMM procedure. The estimated
parameters imply an interquartile range for fixed costs of [US$0.37, US$3.05]. For the product at the median MSRP ($21),
the marginal cost estimates imply a mean wholesale cost of $18.14 for potential entrants, but only wholesale costs of
approximately $16.98 for successful entrants. All standard errors are clustered at the product level.

pricing at higher than 1.5 times MSRP. Since the prominence algorithm often
directs consumers to the cheapest offer, these high-pricing merchants take very
little of the Buybox (and hence market) share.27 However, to account for the entry
of these merchants on the competitive fringe, the model settles on low fixed costs:
any larger fixed cost would render entry unprofitable for merchants with such
high marginal costs.

That said, given the empirical sales frequency, our estimated fixed costs seem
reasonable. These values are comparable to storage costs on Amazon. We observe
roughly one sale per month for the median offer in our sample. Assuming the
median merchant is storing a single item (per product), and that this item is less
than one cubic foot in volume, storing it in an Amazon fulfillment center would
cost about $0.69 per product-month (junglescout.com).

7 Counterfactuals

With estimates in hand, we investigate three questions. First, we examine the
value of improving search guidance. This exercise builds intuition for how the

27This phenomenon of surprisingly high prices is common on e-commerce websites: Dinerstein
et al. (2018, p.1855) discuss a similar finding in the context of eBay, and eventually settle on allowing
their model to infer high marginal costs for these merchants. Similarly, we allow our model to infer
a high variance of marginal cost shocks.
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prominence algorithm affects outcomes via its impact on the allocation of offers
to unsophisticated consumers, prices, and entry. Second, this naturally leads to
the question of how price-sensitive prominence should be, especially given that
the platform may have an incentive to prevent sellers from competing with each
other to keep intermediation fees high. Finally, we examine if steering towards
Amazon’s offers constitutes self-preferencing in the sense of harming consumers.

All counterfactuals assume that all markets feature a prominent offer,28 and
refer to an estimation sample of 47,249 products, representing approximately
US$161 million in revenue and 465 million arrivals per month.29 We distinguish
two time horizons in our counterfactuals. In the short run, we disallow sellers
from adjusting prices or their entry decisions. In the long run, sellers may change
both their prices and entry decisions.

7.1 What is the value of search guidance?

We evaluate the impact of search guidance by comparing outcomes under the
estimated prominence algorithm to those in a counterfactual where unsophisti-
cated consumers only consider the cheapest offer.30 While we do not claim this
fully reflects consumer behavior in the absence of search guidance, it provides a
useful benchmark for illustrating how algorithmic prominence influences market
outcomes such as pricing, entry, and welfare.

As shown in Table 7, search guidance generates notable consumer gains even
in the short run: relative to a scenario where unsophisticated consumers focus
solely on price, the algorithm increases consumer surplus by roughly $10 million
(1.7% of Status Quo consumer surplus). This gain reflects more efficient matching:
unsophisticated consumers are steered toward offers with favorable non-price
attributes, such as FBA offers, that are otherwise hard to discover. In addition to
raising consumer surplus, search guidance increases average third-party sales by

28While we can allow for cancelled prominence, doing so leads to other welfare results being
overwhelmed by the negative effects of showing an unsophisticated consumer zero offers.

29Based on public disclosures, market research firms have estimated that the total revenue
attributable to third-party sellers on Amazon Marketplace is $300 billion (marketplacepulse.com).
Thus, one could extrapolate our results to the entirety of Amazon Marketplace by multiplying our
numbers by $300B/$161M ≈ 1,863 to highlight the magnitude of the issues at stake.

30To ensure best-response iteration convergence, we assume prominence responds exclusively to
price but at a price sensitivity that is only 3x the estimated sensitivity.
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Short-Run Long-Run
Prices & Entry Adjust? ✗ ✓

∆ Consumer Surplus (CS) $10,452,261 $25,176,547
∆ Consumer Surplus (Naive) $10,452,261 $24,390,350
∆ Consumer Surplus (Soph.) $0 $786,196

∆ Producer Surplus (PS) $644,667 $2,083,019
∆ Intermediation Fees $661,615 $118,627
∆ Welfare (CS + PS) $11,758,543 $27,378,193
∆ 3P Mean # Sales/Month 0.88 2.07
∆ 3P Mean Min Price (% MSRP) -2.94%
∆ 3P Mean % Entrants 3.69%

Table 7: The Value of Status Quo Search Guidance (vs Seeking Lower Prices).
Notes: This table provides the difference in various outcomes, on our sample of 47,249 products, that can be attributed to
the estimated prominence algorithm’s performance relative to a non-prominence baseline where unsophisticated consumers
seek lower prices. This baseline is operationalized by tripling the price coefficient in the algorithm (αr ′ = 3α̂r) and switching
off the dependence of the algorithm on observable non-price characteristics. In the short run, sellers cannot change their
prices or entry decisions. In the long run, sellers can change both their prices and their entry decisions. Outcomes that
cannot change (e.g., the number of entrants in the short run) are omitted for clarity. 3P refers to ‘Third-Party’, i.e., it
indicates that the outcome is computed using only non-Amazon offers.

nearly one unit per product per month, thus also raising producer surplus and
intermediation fee revenue.

Once prices and entry are allowed to adjust, the reduced emphasis on price in
the Status Quo algorithm increases producer surplus. As a result, entry increases
and prices fall. Though these effects are modest, they both contribute to an
additional consumer surplus increase, raising the total gains from search guidance
to $25 million (2.7% of Status Quo consumer surplus). Producers also benefit,
but intermediation fees fall as a result of the decrease in prices. Finally, average
monthly sales increase by 2.07 units per product.

7.2 How price-sensitive should prominence be?

We found above that the prominence algorithm is highly price-sensitive, with a
price elasticity of −21. Furthermore, when comparing the Status Quo to a world in
which unsophisticated consumers only consider the cheapest offer, we found that
price sensitivity plays a crucial role in redistributing surplus between producers
and consumers through its impact on prices. This effect on prices flows through to
Amazon’s revenue via ad valorem intermediation fees, suggesting that Amazon may
be incentivized to choose an insufficiently price-sensitive prominence algorithm.
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(a) Consumer Surplus (b) Price and Number of Entrants

(c) Third-Party Producer Surplus (d) Amazon Fees + First-Party Profit

Figure 4: How Price-Sensitive Should the Prominence Algorithm Be?
Notes: The top left panel shows the impact on consumer surplus as we vary the weight that Amazon’s prominence algorithm
places on price, expressed as a multiple of the Status Quo estimate α̂r . We measure the consumer surplus impact as the %
change in consumer surplus relative to the Status Quo. The top right panel shows the corresponding effects on prices and
the average number of entrants. The bottom left and right panels show corresponding impacts on third-party producer
surplus and Amazon profits respectively. The vertical dashed line labelled ’LR Max = SQ’ represents the multiple of α̂r that
maximizes the long-run consumer surplus, which coincides with the Status Quo price sensitivity.

However, as competition becomes more intense, participation on the platform
becomes less attractive for merchants. This tradeoff raises the natural question:
how price-sensitive should prominence assignments be?

We now consider how a social planner would choose prominence assignment
price sensitivity to maximize consumer surplus, accounting for endogenous pricing
and entry. To do so, we vary price sensitivity (measured as a multiple of the
Status Quo sensitivity) and illustrate the impacts on consumer surplus in Figure
4a; the corresponding impacts on prices and entry in Figure 4b; the effect on
producer surplus in Figure 4c; and the effect on Amazon’s profits (revenue from
intermediation fees plus profits from first-party sales) in Figure 4d.
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As Figure 4a shows, the current price sensitivity is approximately optimal from
a long-run consumer surplus perspective. Our results thus do not support the
view that Amazon’s algorithm is inefficiently price-insensitive. Indeed, further
raising price sensitivity reduces consumer surplus in both the short and long run.

How can higher price sensitivity reduce consumer surplus? First, offers on
online marketplaces differ greatly in quality and service dimensions beyond price.
Therefore, effectively matching the roughly 95% of unsophisticated consumers
to attractive options requires the algorithm to weigh factors other than price.
This "less-than-infinite" price sensitivity enables, for example, featuring Amazon-
fulfilled offers despite slightly higher prices, thus benefiting consumers through
better overall matches. This mechanism drives the short-run decline in consumer
surplus as price sensitivity grows beyond the Status Quo (Figure 4a).

Second, driven by the decline in seller surplus illustrated in Figure 4c, an
increase in the price sensitivity of prominence also decreases the number of
entrants, as illustrated in Figure 4b. This effect is more pronounced at levels
of price sensitivity below the Status Quo, where it mostly reduces the available
choices. At higher levels of price sensitivity, it can also make competition less
intense, reducing consumer surplus gains from price decreases that would result
if entry had been held fixed. This second channel is responsible for the small
additional decline in the long run consumer surplus (relative to the short run) as
we move rightwards from the Status Quo in Figure 4a.

While increasing price sensitivity slightly reduces consumer surplus, decreasing
price sensitivity does so much more dramatically, especially in the long run, where
it significantly raises prices. This is concerning because it provides a mechanism
through which Amazon could, in principle, exploit its intermediation power to
increase profits at consumers’ expense. As on-platform offers are much more
substitutable with each other than with off-platform offers, prominence-driven
price increases would not immediately prompt consumer switching. This "loyalty"
creates room for Amazon to significantly increase revenue from intermediation fees
at the expense of consumer surplus. Indeed, Figure 4d shows that decreasing price
sensitivity would dramatically increase Amazon’s profits, especially in the long-
run as prices adjust upwards. However, our estimates indicate that, during our
sample period, Amazon did not choose to increase its profits by picking such a low
weight on price. Furthermore, if Amazon were to regularly feature uncompetitive
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(a) Consumer Surplus (b) Price & Amazon Rec. Share

(c) Third-Party Producer Surplus (d) Amazon Fees + First-Party Profit

Figure 5: How Much Should Amazon Guide Consumers to Its Own Offers?
Notes: The top left panel shows the impact on consumer surplus as we vary the weight that Amazon’s prominence algorithm
places on Amazon’s own offers. We measure the consumer surplus impact as the % change in consumer surplus relative
to the Status Quo. The top right panel shows the corresponding effects on prices and the average share of the Amazon
offer in prominence assignments, conditional on the Amazon offer being present. The bottom left and right panels show
corresponding impacts on third-party producer surplus and Amazon profits respectively. The vertical dashed line labelled
‘LR Max’ represents the value of β̂r

Amazon/β̂r
FBA that maximizes the long-run consumer surplus, while the vertical dotted

line labelled ‘SQ’ represents the Status Quo.

offers, consumers’ willingness to switch to other platforms could eventually rise
(e.g., through reduced Prime membership). Such shifts in consumers’ substitution
patterns fall beyond the scope of our analysis.

7.3 Is Amazon self-preferencing?

Our prominence algorithm estimates point to the algorithm steering consumers
toward Amazon’s own offers. However, we also found that consumers prefer Ama-
zon’s offers. Therefore, without further analysis, it is unclear whether Amazon’s
behavior constitutes ‘self-preferencing’ in the sense of harming consumers.
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To investigate, we run counterfactuals that vary the weight that Amazon’s
prominence algorithm places on its own offers.31 We report our results in Figure
5. Figure 5a shows the impact on consumer surplus, while Figure 5b shows the
corresponding effects on Amazon’s prominence assignment share and the number
of entrants. Figures 5c and 5d show the effects on producer surplus and Amazon’s
profits, respectively. The span of weights on Amazon we consider ranges from
those implying an Amazon prominence assignment share from a minimum of
63% up to 88%.32 We indicate both the Status Quo – in which the additional
prominence weight on Amazon offers is 0.39 times that of FBA offers – and the
value of β̂r

Amazon/β̂r
FBA that maximizes long-run consumer surplus.

As expected, we find that third-party sellers unambiguously suffer from Ama-
zon’s prominence advantage – as illustrated in Figure 5c, their preferred promi-
nence weight on Amazon offers is zero.

By contrast, the short-run consumer surplus (the blue line on Figure 5a) is
locally increasing in the prominence weight on Amazon offers near the status quo
(marked by the vertical line labelled ‘Status Quo’): as we estimate strong consumer
preferences for Amazon offers, featuring these offers more frequently is beneficial.
Beyond the plotted span, this effect eventually levels off and reverses as excessive
steering toward Amazon offers diverts consumers away from cheaper offers. This
reversal, however, does not occur until the prominence weight on Amazon offers
reaches about 5.6 times that of FBA offers. Thus, had we ignored pricing and
entry decisions and looked only at the short run, we would have concluded that
Amazon’s current prominence weight on its offers is much too low.

In the long run, however, this is not the case. As we see in the left panel,
consumer surplus is maximized at a prominence weight on Amazon offers of about
0.6 times that of FBA offers, just slightly above the Status Quo. For even higher
values of βr

Amazon/βr
FBA, consumer surplus is decreasing in the prominence weight

on Amazon offers, indicating that Amazon’s current prominence weight is about
right and Amazon is not self-preferencing in the sense of harming consumers.

What drives the difference between the short and long run? It is not entry, which
remains largely stable (and is hence not plotted). Accordingly, our analysis does
not support the common theory of harm that Amazon’s prominence advantage

31Note we report results on products with an Amazon offer only as other markets are unaffected.
32Recall Amazon offers can be featured even if βr

Amz = 0, e.g., due to competitive prices.
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suppresses entry.
Instead, Figure 5b shows that the prominence-weighted price across offers

rapidly increases as Amazon features its own offers more frequently. This change
is almost exclusively driven by Amazon increasing its prices to exploit its larger
market power, which happens because our model assumes that the platform’s
retail division maximizes short-run profits, just like other merchants. This assump-
tion generates a strong pricing response by the platform to an increase in the
prominence weight on Amazon offers. Indeed, we can also see this effect in Figure
5d, which shows that Amazon’s profits increase more rapidly in the long run than
the short run as we increase the prominence weight on Amazon offers.

However, this implication is in tension with Jeff Bezos’ (admittedly conflicted)
public statements that Amazon “[does] price elasticity studies, and every time the
math tells us to raise prices[, but we do not]” (Rose 2013). Still, Appendix G.2
shows that fixing Amazon’s prices at their Status Quo levels shifts the consumer-
surplus-maximizing prominence weight on Amazon offers upward, leaving our
conclusion—that Amazon is not self-preferencing—intact.

We make two cautioning observations. First, these results rely on our estimates
of the extent to which consumers prefer Amazon offers to those of third-party
merchants. As we cannot access sales data for Amazon offers, we must infer these
sales from market size estimates and sales on other, non-Amazon offers. Although
this procedure yields no formal identification issues, future work can improve on
our estimates with better sales data.

Second, our model estimates are based on data from 2018 to 2020. However,
Amazon can change its algorithm at will. Hence, while our results suggest that
Amazon was not self-preferencing at one particular point in time, this does not
rule out the possibility that Amazon is self-preferencing at present or could do so
in the future.

8 Conclusion

Regulators worry that platforms matching buyers and sellers may influence market
outcomes by guiding consumer search through algorithmic prominence. We ex-
plore this issue by building and estimating a model of intermediation power. Our
model captures algorithmic influence on consideration sets yet remains flexible
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enough to let the data speak to the extent of this influence. Our findings demon-
strate the power of steering: on Amazon Marketplace, 95% of customers only
consider prominent offers. Through their choice of search, ranking, and promi-
nence algorithms, platforms are indeed able to influence market outcomes, guide
consumers toward their own offers and choose the intensity of price competition.
In short, algorithmic prominence gives platforms intermediation power.

However, the mere existence of intermediation power does not imply that
platforms must exploit it to consumers’ detriment. Indeed, we find that Amazon’s
prominence algorithm favors the platform. Yet the self-preferencing question is
more nuanced: according to our estimates, consumers also prefer Amazon’s offers.
Indeed, our estimated model implies that Amazon is not self-preferencing in the
sense of harming consumers. While featuring its own offers more prominently
does lead to higher prices, it does not affect entry incentives much and consumers
benefit from seeing offers they are likely to purchase. On net, we find that the
frequency with which Amazon’s algorithm features its own offers is approximately
optimal from a consumer surplus perspective: featuring Amazon’s offers more
frequently would lower consumer surplus via higher prices, whereas featuring
them less would steer consumers away from their preferred offers.

Our model also allows us to assess a recently prominent theory of harm—that
self-preferencing acts as a barrier to entry. We find no evidence supporting this
theory. Nevertheless, entry matters: by choosing the price sensitivity of prominence
assignments, the platform can trade-off competition among incumbents against
entry incentives. While some fear the platform is insufficiently motivated to foster
competition because of its ad valorem intermediation fees, our results suggest that
it has approximately chosen the consumer-surplus-maximizing price sensitivity.

We discuss future directions. On the demand side, richer sales could reveal
which consumers are helped or hurt by platform steering. Future work could also
assess the extent to which our attempt to compensate for the shortcomings of
our data by, e.g., proxying for market size has affected our conclusions. On the
supply side, our analysis can be adapted to speak to innovation and the growth
of platforms over the long-term. In the very long run, merchant quality and
investment matter; how these dynamics interact with prominence algorithms is
an open question. For instance, Amazon’s prominence algorithm incentivises
merchants to adopt FBA—does this incentive eventually harm consumers through
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higher prices or benefit them through better service? Finally, even large platforms
face competitors. Although our entry margin implicitly accounts for merchants’
ability to switch platforms, a richer model could explicitly allow both consumers
and merchants to multi-home.
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A Data Description

Our primary data source is a repricing company that administers offer listings on
behalf of third-party merchants on Amazon Marketplace. The company provides
us with three data sets of interest spanning one and a half years. Firstly, we have
access to the notifications sent to the company programmatically by Amazon.
These notifications are sent if there are any changes on any of the offers on
the listings that the company administers (e.g., price updates, exits or entries).
Secondly, the company is informed of any sales on its customers’ listings. Finally,
we have regular data on the sales ranks of each product (i.e., market, not offer).

To begin with, the notifications are our primary source of information about the
alternatives available on any given market at any given time. For each notification
and offer, we observe (i) a prominence dummy, (ii) whether the offer is prominence
eligible, (iii) whether Amazon fulfills it, (iv) its list price and (v) shipping price,
(vi) the feedback count, (vii) the fraction of positive feedback for the associated
seller, and (viii) the time to dispatch. Whenever we refer to price, we mean the
sum of list price and shipping price. The main challenge of this dataset is its
uneven time resolution: a notification is sent whenever any offer characteristic
other than prominence changes. Thus, while we have infinite temporal resolution on,
e.g., prices, we lack this precision in prominence assignments.

The demand data contain, for each merchant registered with the repricing
company, the exact time of every sale the merchant made during its period of
registration. Though sales data linked to sellers on Amazon are rare, a caveat with
this dataset is that we cannot independently verify when a merchant is registered
with the company.

We combine these datasets using the following procedure. First, for each
product, we need a proxy for the period that the seller of said product was
registered with the repricing company. To do so, we find the dates of the first and
last observed sale; then, we declare the product observed on any dates between
those two. Second, we need to merge the notifications with the sales data. We do
so by associating each notification with the sales we observe between the time it
was sent and 48h later or the time of the next notification, whichever comes first.
As this means the period during which sales are associated with a notification
varies across notifications, we also record this duration for later use in market size
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calculations.
After merging, we obtain a dataset at the ‘offer x notification’-level (with

varying durations) with 204,396,069 observations. As our data does not contain
reliable information about the feedback count for Amazon, we replace Amazon’s
feedback count with the maximum value in the dataset.33 Summary statistics
for our final dataset are provided in Table 9(a), and further information (e.g., on
the number of unique products) is provided in Table 9(b). For instance, from
2018-08-26 to 2020-03-23 and across 47,403 products, we observe 803,849 sales
which we can attribute to a notification at most 48 hours before the sale.

N Avg. Std. Dev. Min. 50th Max.

Price/MSRP 204,396,069 1.18 0.44 0.36 1.07 5.25
FBA 204,396,069 0.55 0.50 0.00 1.00 1.00
Amazon 204,396,069 0.02 0.13 0.00 0.00 1.00
Log (Feedback Count) 204,396,069 7.30 2.82 0.00 7.19 15.69
Time To Ship (in Days) 204,396,069 0.91 1.23 0.00 0.00 4.50
Prominence Dummy 204,396,069 0.09 0.28 0.00 0.00 1.00
Sales 19,409,013 0.04 0.57 0.00 0.00 448.00
Duration (in hours) 204,396,069 3.09 5.45 0.25 1.02 48.00

(a) Offer-Level Summary Statistics.

# Unique Products 47,403
# Merchants 63,620
# Markets (Product x Time) 19,409,013
# Sales 803,849
# Markets with Sales 411,401
Earliest Market 2018-08-26 01:18:08
Latest Market 2020-03-23 23:41:28
Earliest Market w/ Sale 2018-08-26 01:20:25
Latest Market w/ Sale 2020-03-23 22:21:50

(b) Descriptives

Table 9: Summary Statistics and Descriptives.
Notes: These tables display summary statistics for the dataset used in prominence and consumer choice estimation. For the
left table, the unit of observation is an offer on a given market, so a (merchant, time, product page). The right table displays
counts of products, merchants, markets, and sales; as well as the first and last markets we see, with or without a sale.

B Estimation with Price Endogeneity

Our mainline estimates make use of identifying Assumptions 6 and 8 which imply
E[ξjt|pjt] = E[ξjt] and E[ξr

jt|pjt] = E[ξr
jt]. However, a typical worry in demand

estimation is that unobserved quality ξjt and price pjt may be correlated. Hence,
we also develop estimators that rely on quality merely being time-invariant, i.e.,
Assumptions 7 and 9. These estimators allow for arbitrary correlation of an offer’s
unobserved quality and price, as long as quality and price do not co-move within
the same offer over time. This assumption is plausible because observable offer
quality is mostly time-invariant. Indeed, the R2 from regressing time until dispatch,

33This cannot influence our demand or prominence predictions, as we are controlling for an
Amazon dummy in the relevant models. However, if we are significantly underestimating the
feedback count of Amazon, it could influence the interpretation of the Amazon coefficient in, e.g.,
the prominence estimation.
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log feedback count, being fulfilled by Amazon, and being sold by Amazon on offer
fixed-effects are 0.96, 1.00, 0.98, and 1.00 respectively.

B.1 Offer FE under Full Observability

We now illustrate how to condition out alternative-specific fixed effects when
estimating a multinomial logit discrete choice model. We first consider the case
when the chosen alternative is observed (as for the prominence algorithm esti-
mation). Subsequently, we extend our results to the case where there is only one
alternative for which we observe whether it is chosen. This section generalizes
results in Chamberlain (1980) which themselves are based on Rasch (1960, 1961).
See Arellano and Honoré (2001) for a modern treatment.

Recall that the Buybox’s mean utility from alternative j on product page w at
time τ is given by

δr
jwτ = x′jwτβr − αr pjwτ + ξr

jw, (20)

where in contrast to the main text we have imposed Assumption 7, i.e., offer quality
ξr

jw ≡ ξr
jwτ is time invariant.

Mean utilities on each offer are combined with a Type-1 extreme value shock
ϵjwτ to yield a utility index vr

jwτ = δr
jwτ + ϵr

jwτ. Prominence is assigned to the offer
with the highest utility index. If yr

jwτ is a prominence dummy, we have

yr
jwτ = 1{vr

jwτ ≥ max
k

vr
kwτ}. (21)

Using McFadden (1981), this multinomial logit model can be transformed into a
standard binary logit model by appropriate conditioning. Indeed, consider two
alternatives j and j′ that have a non-zero probability of being featured. Then,

P
(

yr
jwτ = 1|yr

jwτ + yr
j′wτ = 1

)
=

1

1 + exp
(

δr
jwτ − δr

j′wτ

) . (22)

But as argued by Chamberlain (1980), a fixed effect in a binary logit model can
be eliminated by (further) conditioning on an appropriate sufficient statistic. Fix
two periods τ, τ′ and consider the event C = {yr

jwτ + yr
jwτ′ = 1, yr

jwτ′ + yr
j′wτ′ = 1}.
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Then

P(yr
jwτ = 1|yr

jwτ + yr
j′wτ = 1, C) =

P(yr
jwτ = 1, yr

jwτ + yr
j′wτ = 1|C)

P(yr
jwτ + yr

j′wτ = 1|C)

=
1

1 + exp[(δr
jwτ − δr

jwτ′)− (δr
j′wτ − δr

j′wτ′)]
.

(23)

But neither δr
jwτ − δr

jwτ′ nor δr
j′wτ − δr

j′wτ′ contain ξr
jw. Thus, to consistently estimate

βr and αr in the presence of ξr
jw we can maximize the log likelihood function

L(αr, βr) =
|W|

∑
w=1

Tw

∑
τ=1

|Jwτ |

∑
j=1

∑
j′,τ′∈Zjwτ

ln

(
1

1 + exp[(δr
jwτ − δr

jwτ′)− (δr
j′wτ − δr

j′wτ′)]

)
.

(24)
Here, Zjwτ is the set of all potential offers j′ ̸= j and times τ′ ̸= τ that satisfy
yr

jwτ + yr
j′wτ = 1, yr

jwτ + yr
jwτ′ = 1 and yr

jwτ′ + yr
j′wτ′ = 1. In practice, we estimate

the model under the restriction βr = 0 as there is very little variation in non-price
offer characteristics.

B.2 Offer FE under Partial Observability

We observe sales for exactly one alternative j for each product page. Thus we
cannot exactly follow the previous subsection: forming the required conditioning
set Zjwτ requires observations on at least two alternatives. However, at the cost of
some power, we can exploit the high-frequency nature of our data to construct an
estimator that is consistent in the presence of arbitrary fixed effects. Recall that a
consumer’s mean utility is given by

δjwτ = x′jwτβ − αpjwτ + ξjw, (25)

where, in contrast to the main text, we have imposed Assumption 9, i.e. that offer
quality ξjw ≡ ξjwτ is time-invariant. Mean utilities on each offer are combined in
the usual fashion with a Type-I Extreme Value shock ϵijwτ to yield a utility index
vijwτ = δjwτ + ϵijwτ. For now, assume all consumers are sophisticated, so each
consumer simply chooses her preferred option. If yijwτ is a dummy indicating
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whether consumer i chooses alternative j at time τ on product page w,

yijwτ = 1{vijwτ ≥ max
k

vikwτ}. (26)

But note

P(yijwτ = 1|yijwτ + yijwτ′ = 1) =
P(yijwτ = 1)P(yijwτ′ = 0)

P(yijwτ = 1)P(yijwτ′ = 0) + P(yijwτ = 0)P(yijwτ′ = 1)

=
1

1 + ∑k ̸=j exp(δikwτ)

∑k ̸=j exp(δikwτ′ )
exp(δijwτ′ − δijwτ)

(27)

In general, ∑k ̸=j exp(δikwτ) ̸= ∑k ̸=j exp(δikwτ′). However, when xkwτ = xkwτ′ and
pkwτ = pkwτ′ for all k ̸= j, then equality holds. Thus, we restrict attention to pairs
of periods between which all offers for which we do not observe sales remain
unchanged. This procedure yields the following likelihood function:

L(α, β) =
|W|

∑
w=1

∑
(τ,τ′)∈Xw

ln

(
1

1 + exp(δijwτ′ − δijwτ)

)
, (28)

where

Xw = {(τ, τ′)|∀k ̸= j : xkwτ = xkwτ′ , pkwτ = pkwτ′} ∩ {(τ, τ′)|yijwτ = 1, yijwτ′ = 0}.
(29)

In practice, we estimate the model under the restriction β = 0 as there is very little
variation in non-price offer characteristics.

C Details of Simulated Method of Moments

In this section, we describe the technical details underlying the SMM procedure.
To begin with, we speed up computation of the pricing game equilibrium by
chaining distinct fixed-point iterations. While it is conventional to use the fixed-
point algorithm of Berry, Levinsohn, and Pakes (1995, henceforth BLP), we employ
instead the ζ-markup equation of Morrow and Skerlos (2011, henceforth MS),
which has stronger local convergence properties (Conlon and Gortmaker 2020).

Moving up to the entry game, since expected gross profits are discontinuous
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in the number of entrants, we smooth over these discontinuities via importance
sampling (Ackerberg 2009). Finally, to speed up the outer loop, we concentrate
out the wholesale cost parameters and employ DFO-LS, a modern, derivative-free
Gauss-Newton optimization method. It interpolates points to find an approximate
Jacobian, constructs a locally quadratic model, and alternates minimizing the ob-
jective and updating the interpolation set (Cartis et al. 2019). This solver separately
models the response of each moment to each parameter, delivering performance
superior to the classic simplex algorithm (Nelder and Mead 1965).

Below, we first describe how we solve the pricing and entry games; how we
simulate a market; and how we aggregate markets to moments. Next, we describe
concentrating out wholesale cost parameters, and smoothing out the SMM objective
by importance sampling. Finally, we display measures of model fit. Where evident,
we suppress market subscripts t.

C.1 Solving the Pricing Game

Fix a market p and entrants J . Each entrant’s type is (cj, qj, qr
j), where qj = x′jβ+ ξj

and qr
j = x′jβ

r + ξr
j measure the attractiveness of the entrant to consumers and

the prominence algorithm, respectively. Entrants are fully informed about each
other’s types and treat price as a strategic variable. Thus, the first-order condition
associated with seller j’s choice of price is

ϕsj(p, q) + [ϕpj − cj]
∂sj

∂pj
= 0. (30)

An equilibrium of the pricing game comprises a vector of market prices p satisfying
Equation (30) for all entrants j ∈ J . To ease notation, suppress the dependence of
all variables on q, the matrix of buy box and demand qualities across merchants in
a market. Following Morrow and Skerlos (2011), decompose the Jacobian matrix
of market shares: ∂s

∂p′ = Λ(p)− Γ(p), where Λ(·) contains the diagonal elements
of the Jacobian matrix and Γ(·) contains the factors common to both the diagonal
and off-diagonal elements. Then, write the ζ-markup equation

p = ϕ−1c + ζ(p), ζ(p) = Λ(p)−1Γ(p)′(ϕp − c)− Λ(p)−1s(p), (31)
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whenever Λ(p) is nonsingular.34

Having described Equation (31), we chain iterations based on the ζ-markup and
BLP-markup equations to find a fixed point. Iterating on the ζ-markup equation
improves convergence relative to iterating on the BLP-markup equation alone.35

In our model, an equilibrium exists but is unlikely to be unique. With two types
of consumers, the pricing game is no longer supermodular, so the equilibrium
we find depends on starting values. Our estimation procedure gives the entrant
with the highest adjusted prominence algorithm attractiveness, qr

j − αrcj, a lower
starting price than the others.

C.2 Solving the Entry Game

The information set36 of potential entrants j ∈ N is Ij = {cj, F}. As profits are
strictly decreasing in own costs, firms play cutoff entry strategies, i.e., χj = 1{cj ≤
c∗j }. From the perspective of prospective entrant j, entry is profitable if and only if

Eq,c−j [πj(cj, qj; c−j, q−j, χ−j)] ≥ F. (32)

We focus on symmetric equilibria: c∗j = c∗ for all j ∈ N . This c∗ satisfies a
zero-profit condition at the cost cutoff:

V(c∗) = Eq,c−j [πj(c∗, qj; c−j, q−j, χ∗
−j)] = F; χ∗

k(c) = 1{ck ≤ c∗} ∀ k ̸= j. (33)

34Under some technical conditions, Proposition 2.12 in Morrow and Skerlos (2010) expresses the
ζ(p) term as

ζ(p) = Ω(p)(ϕp − c) +
(

I − Ω(p)
)

η(p); η(p) = −
[

∂s
∂p′

]′
s(p),

where Ω = Λ−1Γ and η(p) is the standard BLP markup term.
35There are examples for which “Iterating on the BLP-markup equation is not necessarily locally

convergent, while iterating on the ζ-markup equation is superlinearly locally convergent” (Morrow
and Skerlos 2011, p. 329).

36Henceforth, we suppress writing fixed costs F in the information set: merchants within a
market t face the same fixed costs.
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The LHS of this equation is a function V(c) in the candidate cutoff c. We approxi-
mate V(c) by an average across simulation draws, i.e.,

V̂(c) =
1
S

S

∑
s=1

πj(c∗, qs
j ; cs

−j, qs
−j, χ∗

−j). (34)

Applying standard root-finding techniques to Equation (33) yields c∗.

C.3 Simulating a Market

We combine Subsections C.1 and C.2 to simulate market-level outcomes. We
employ the algorithm presented in Figure 6b. We begin by drawing a scalar fixed
cost F. Next, we draw S vectors of wholesale costs cs ∈ R|N |, demand qualities
qs ∈ R|N |, and algorithm qualities qr

s ∈ R|N |. Using the algorithm in Subsection
C.2, we obtain the entry cutoff c∗. Next, referring to simulation draw s = 1, we
find the set of successful entrants J = {j ∈ N : cjs ≤ c∗} and calculate their
equilibrium prices, profits, and market shares using Subsection C.1.

C.4 Aggregating Markets to Moments

Following Ackerberg (2009), we aggregate market-level outcomes to moments.
Fix a market t. Our model postulates a relationship f between (market-level)
observables37 xt = (At, Rt), unobservables ut, and outcomes yt. In particular, at
the true parameter vector θ0 we have

yt = f (xt, ut, θ0). (35)

We list the outcomes included in yt in the Section 5.3 in the main text. If the
data {xt, yt}T

t=1 are generated by our model at the true θ0, then

θ = θ0 =⇒ E[yt − E[ f (xt, ut, θ)|xt]|xt] = 0. (36)

The reverse implication also holds as long as our model parameters are identified
(we argue they are in the main text). As econometricians, we do not observe the
true value of the unobservables ut. In our model, these shocks include (i) fixed

37Here, A refers to market size and R to the manufacturer’s suggested retail price.
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costs Ft for each market and (ii) qualities (qjt, qr
jt) as well as wholesale unit costs

cjt for each potential entrant on each market. To proceed, we make parametric
assumptions on the distributions of these quantities. Concretely, we assume that
(qjt, qr

jt) are drawn from the empirical distribution implied by our prominence
algorithm and consumer choice estimation.

Wholesale and fixed costs are drawn following Assumption 10 in the main
text. Given some candidate θs = (θF

0 , θF
x , θF

σ , θc
0, θc

x, θc
σ), the conditional distribution

of unobservables p(ut|xt, θ) is thus fully specified. In theory, we could use our
model and the moment condition(s) in (36) to estimate θ. However, in practice,
these expectations are hard to compute: they involve not one but two layers of
games for which equilibria must be numerically computed (the entry game and
the pricing game). Instead, we take simulation draws (ut1, . . . , utS) ∼ p(ut|xt, θ)

and approximate the expectation by averaging:

Ê ft(θ) =
1
S ∑

s
f (xt, uts, θ). (37)

As shown in McFadden (1989) and Pakes and Pollard (1989), estimation can pro-
ceed based on the simulated method of moments estimator that sets the simulated
moment vector Ĝ(θ) close to zero, as in Equation (15).

C.5 Concentrating Out Wholesale Cost Parameters

We partition θ = (θF, θc) where θF = (θF
0 , θF

x , θF
σ) and θc = (θc

0, θc
x, θc

σ). Define

θ̃F(θc) = arg min
θF

Qn((θ
F, θc)), and θ̃c = arg min

θc
Qn((θ

F(θc), θc)). (38)

Then, θ̂ = (θ̃F(θ̃c), θ̃c). Hence, we “concentrate out” θF when searching over θc.
We use the algorithm presented in Figure 6a.

Our approach has a similar intuition to why the linear parameters are concen-
trated out when estimating a mixed logit model: their estimation is computationally
trivial once this step is performed (Berry, Levinsohn, and Pakes 1995). For us,
θ̃F(θ̃c) can be found without re-solving the pricing game.
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for p = 1, . . . , P do
for s = 1, . . . , SF do

simulate entry for (p,s)

θF = θF
0

while dist > tol do
reweight sim data for θF

dist = Ĝ(θc, θF)
update θF

return Ĝ(θc, θF)

(a) SMM Moments Ĝ(θc).

Data: SE sets Nse of pot
entrants

for c̃ ∈ grid do
fix c1 = c̃
for se = 1, . . . , SE do

J = {1} ∪ {j ∈ Nse : cj <

c̃, j > 1}
find π1(J ) using
fix-point iter.

V(c̃) ≈ 1
SE

∑se π1(·)
c∗ solves V(c∗) = F
J = {j ∈ N1 : cj < c∗}
solve pricing game given J

(b) Simulation of Entry.

Figure 6: Algorithms Used in SMM Estimation.
Notes: We provide the two key algorithms used in the SMM estimation procedure. In the left panel, we detail how to find
the value of the outer SMM objective. In the right panel, we describe entry simulation.

C.6 Importance Sampling

To smooth over discontinuities in the entry process, we employ importance sam-
pling Ackerberg (2009).38 Because θc is fixed, we suppress mention of it in our
notation. Then, write outcomes directly as a function of fixed cost draws rather
than as a function of shocks: f (xt, ut, θ) = f̃ (Ft).

We pursue the following simulation strategy: draw Fts ∼ g(·) where g(·) is a
heavy-tailed density. Then use our knowledge of the distribution of fixed costs
implied by our current parameter guess to re-weight the outcomes at the simulated
fixed cost draws. Formally speaking, we compute

Ẽ ft(θ) = ∑
s

f̃ (Fts)
p(Fts|xt, θ)

g(Fts|xt)
. (39)

This simulator has two advantages. Firstly, the density for fixed costs we specified
is smooth, ensuring that the simulated outcomes will smoothly depend on θF.
Thus, for instance, as we increase the mean of the fixed cost distribution, the
estimator will smoothly put less and less weight on low fixed cost draws. The
second advantage is that we only need to compute the market-level outcomes f̃ (Fts)

once at the beginning of the procedure. As we vary θF, the outcomes employed do
not vary; they are simply reweighted.

38Finding fixed cost parameters θ̃F(θc) requires a continuous objective. However, entry is a
discrete process: for instance, as we decrease F, there is only one entrant until some point at which
this number “jumps” to two.
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To avoid additional simulation error in our estimates, we iterate the importance
sampling procedure eight times: at each new iteration, we let g(·|xt) equal the
density p(·|xt, θF

prev) at the optimal value θF
prev of the previous iteration.39

D Monte Carlo Studies

To evaluate the robustness of our estimation procedure to violations of our identi-
fying assumptions, we perform Monte Carlo analyses of demand and supply.

D.1 Monte Carlo: Prominence

Regarding prominence, the key identification concern is the possibility of correla-
tion between unobserved prominence advantage ξr

jt and prices. Our Monte Carlo
analysis is designed to evaluate the robustness of our estimator to this concern. In
Table 10, we take covariates xjt from our data, fix the coefficients at those estimated
in our mainline analysis, and simulate the prominence outcome by combining the
implied mean utilities with correlated extreme value shocks and unobserved ξr

jwτ

under three assumptions:

1. Panel A: ξr
jwτ ≡ 0, i.e., there is no unobserved prominence quality. Then we

recover the true coefficients.

2. Panel B: ξr
jwτ ≡ ξr

jw, i.e., there is unobserved prominence quality that is
time-invariant but endogenous with respect to average prices.40 We recover
biased coefficients in the naive estimator but the offer-fixed effects estimator
still recovers the true coefficients. Furthermore, unlike in our main analysis,
these two estimators recover different coefficients, suggesting time-invariant
price endogeneity is not a concern in the actual (non-simulated) data.

3. Panel C: ξr
jwτ = 0.4 × pz

jwτ, i.e., prominence quality is endogenous with
respect to current prices. Then, both estimators are biased.

We conclude that time-invariant price endogeneity is not a concern (as it could
be detected) but our estimators are not robust to time-varying price endogeneity.

39As in Ackerberg (2009), this iteration converges quickly (typically within three steps).
40Concretely, let pz

jwτ be the z-score associated with the offer price divided by MSRP. Then if Tw

is the set of times associated with product web-page w, we set ξr
jw = 0.4 × |Tw|−1 ∑τ∈Tw pz

jwτ .
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Truth Panel A Panel B Panel C
(0) (1) (2) (3) (4) (5) (6)

Price / MSRP -24.22 -24.23 -22.43 -14.23 -23.65 -14.06 -13.52
(0.049) (0.688) (0.067) (0.704) (0.029) (0.430)

Time to Ship (in Days) -1.11 -1.11 -0.97 -1.12
(0.006) (0.010) (0.007)

100 × Log(Feedback Count) 4.33 4.35 2.66 4.33
(0.067) (0.115) (0.065)

FBA 2.56 2.54 2.26 2.53
(0.013) (0.024) (0.013)

Amazon 1.11 1.11 0.80 1.11
(0.009) (0.017) (0.008)

Outside 4.48 4.49 3.58 3.42
(0.012) (0.011) (0.009)

λ 0.09 0.09 0.10 0.09
(0.001) (0.001) (0.001)

Offer FE? ✗ ✓ ✗ ✓ ✗ ✓

Table 10: Monte Carlo of Prominence Algorithm Estimation.
Notes: This table reports on a Monte Carlo exercise testing the prominence algorithm estimation. We take covariates xjt
from the data, fix the coefficients as in (0), and simulate the prominence outcome by combining the implied mean utilities
with correlated extreme value shocks and unobserved ξr

jwτ under three assumptions. Panel A assumes that there is no
demand shock, i.e., ξr

jwt ≡ 0. Panel B assumes that ξr
jwt is proportional to an offer’s average price divided by MSRP. Panel C

assumes that ξr
jwt is proportional to an offer’s current price divided by MSRP, thus also violating the identifying assumption

required for the offer-fixed effects estimator.

D.2 Monte Carlo: Demand Warmup

We now explain in a simpler model why the strategy of conditioning on a noisy
proxy for the prominence dummy is valid; the notation in this section is separate
from the main text. Suppose we have the following probit model

yi = 1{α + βxi + ϵi > 0} (40)

where xi ∈ {0, 1} is unobserved, ϵi ∼ N(0, 1) and (α, β) are scalar parameters.
Suppose further we have a noisy proxy pi such that xi|pi, ui ∼ Bernoulli(pi + ui)

where ui ∼ F(·) is a mean-zero unobservable. As xi is binary, F(·) turns out to be
irrelevant as for any F(·) we have xi|pi ∼ Bernoulli(pi). Hence, we can estimate
this model via maximum likelihood conditional on pi, i.e.,

ℓ(α, β) =
n

∑
i=1

log
[
yi
(

piℓ1(α, β) + (1 − pi)ℓ0(α, β)
)

(41)

+ (1 − yi)
(

pi(1 − ℓ1(α, β)) + (1 − pi)(1 − ℓ0(α, β))
)]

where ℓ1(α, β) = Φ(α + β), and ℓ0(α, β) = Φ(α).
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ui ≡ 0 ui ∼ N(0, 1) ui = ϵi

Infeasible 2.00 (0.00) 2.00 (0.00) 3.71 (0.00)
Plug-In 1.71 (0.03) 1.71 (0.03) 1.73 (0.03)
Proxy 2.00 (0.06) 1.99 (0.06) 2.03 (0.06)
True 2.0

Table 11: Monte Carlo Simulation of Probit with Unobserved Regressor.
Notes: These Monte Carlo results compare the proposed proxy-based estimator (which integrates out the uncertainty over
the unobserved regressor) with two alternative estimators: the infeasible estimator (which directly uses the unobserved
binary xi) and a plug-in estimator (where pi is used in place of xi in the infeasible estimator’s likelihood). While the proxy
estimator is unbiased, both other estimators are biased under some circumstances.

As confirmed by Monte Carlo simulations in Table 11 (‘Proxy’ row), this strategy
results in a consistent estimator of (α, β) even when cov(ϵi, ui) ̸= 0 as long as (i)
cov(pi, ϵi) = 0, (ii) var(pi) > 0 and (iii) pi is well-calibrated (i.e., E[xi|pi] = pi).41

In our context, yi is demand, xi is a prominence dummy, pi is the predicted
prominence probability, ϵi is a demand shock and ui is a prominence shock. Thus,
even when demand and prominence shocks are correlated, we still recover the
correct parameters – and that is indeed what we find in the Monte Carlo analysis
below.

D.3 Monte Carlo: Demand

On the demand side, the key identification concerns are the potential endogeneity
of price, as well as correlation between unobserved prominence advantage ξr

jwτ

and unobserved determinants of demand ξjwτ. To operationalize these concerns in
a Monte Carlo analysis, we combine the recovered coefficients from our demand
estimates with the covariates xjwτ in our data and simulated correlated extreme
value shocks to generate sales under various assumptions about demand shocks
ξjwτ. The results from six Monte Carlo scenarios are displayed in Table 12:

Regarding endogeneity of price:

• Panel A: No demand shock, i.e., ξjwτ = 0. Then both our estimator and the
one using offer fixed effects recover the true price sensitivity. Note that, as
expected, the fixed effect estimator does not yield the same price coefficient

41Just like (i) and (ii) are reminiscent of exclusion and relevance in instrumental variables, (iii)
can be thought of as a requirement on the first-stage in an IV strategy.
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as reported in (0) – but this is because the estimator, which cannot distinguish
between substitution between inside options and substitution to the outside
option, is mixing these two sources of substitution. Indeed, as expected,
the estimated price sensitivity of -1.25 in (2) lies between the inside price
sensitivity of -3.04 reported in (1) and the implied inside-vs-outside price
sensitivity in that column (which is −3.04 × 0.08 ≈ −0.24).

• Panel B: Price endogeneity, constant over time. Here, unobserved determi-
nants of demand ξjwτ are proportional to an offer’s average price divided by
MSRP. Then our standard estimator is biased but the method using offer
fixed effects recovers the true price sensitivity.

• Panel C: Time-varying price endogeneity. Here, ξjwτ is assumed proportional
to an offer’s current price divided by MSRP. Because identifying conditions
for both estimators are violated, neither estimator recovers the true price
sensitivity.

Note all of these estimators recover the correct fraction of sophisticated consumers.

Regarding prominence endogeneity & proxying:

• Panel D: There are prominence-relevant characteristics uncorrelated with
price and demand shocks but which we do not observe, i.e., ξr

jwτ ∼ N(0, 0.42).
By analogy to integrating out known measurement error in a continuous
variable, one may be concerned this could introduce bias for a binary variable
like the prominence dummy, too.42 However, the Monte Carlo results confirm:
with a well-calibrated prominence proxy, the estimates remain unbiased
(though their variance increases as the proxy becomes more imprecise). We
establish in Section E, Figure 7(a) that our prominence proxy in the main
analysis is well-calibrated.

• Panel E: Unobserved demand quality is correlated with unobserved promi-
nence advantage. Here, we assume ξjwτ ≡ ξr

jwτ ∼ N(0, 0.42). The estimate of
ρ̂ remains unbiased, which is intuitively reasonable because the estimation

42As discussed in Section D.2, this concern is misleading because a binary variable’s distribution
is fully determined by its mean.
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Truth Panel A Panel B Panel C Panel D Panel E Panel F
(0) (1) (2) (3) (4) (5) (6) (7) (8) (9)

Price / MSRP -3.00 -3.04 -1.25 7.78 -1.35 10.00 0.07 -3.48 -0.64 -5.37
(0.158) (0.632) (0.459) (0.589) (0.243) (0.470) (0.550) (0.624) (0.114)

Dispatch Time (in Days) -0.15 -0.20 -0.07 -0.09 -0.00 0.17 -0.25
(0.064) (0.092) (0.066) (0.191) (0.163) (0.031)

100 × Log(#Feedback+1) -4.17 -4.26 -8.56 -5.67 -15.57 -9.76 0.16
(1.010) (1.669) (1.423) (5.763) (7.313) (0.492)

FBA 1.23 1.06 0.57 0.65 2.03 0.49 0.84
(0.147) (0.240) (0.153) (0.455) (0.730) (0.068)

Amazon 1.62 1.49 0.97 1.35 2.44 1.22 0.45
(0.146) (0.820) (0.445) (0.609) (0.945) (0.082)

Outside -3.61 -3.54 -4.34 -4.56 -3.60 -3.18 -3.53
(0.020) (0.037) (0.024) (0.048) (0.167) (0.015)

Nesting Coefficient (λ) 0.05 0.08 0.06 0.07 0.04 0.23 0.05
(0.006) (0.006) (0.002) (0.012) (0.236) (0.003)

Sophisticates Fraction (ρ) 0.06 0.06 0.06 0.06 0.06 0.06 0.26
(0.001) (0.004) (0.002) (0.005) (0.025) (0.003)

Offer FE? ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗

Table 12: Monte Carlo of Demand Estimation.
Notes: This table provides results from a Monte Carlo exercise that tests our demand estimation. We sample covariates X
from our real data and use the coefficients in (0) to simulate sales under various assumptions about demand shocks ξjwt.
All panels assume a 75% probability that prominence assignments changed since the last observation. Panel A assumes no
demand shock, i.e., ξjwt ≡ 0. Under this assumption, both the naive and offer fixed-effects estimators recover the true price
sensitivity (i.e., coefficient on Price/MSRP). Panel B assumes that ξjwt is proportional to an offer’s average price divided
by MSRP. The naive estimator is biased, but we recover the true coefficients once we include offer fixed-effects. Panel C
assumes that ξjwt is proportional to an offer’s current price divided by MSRP, thus violating the identifying assumption
required for the offer-fixed effects estimator; indeed, our estimates are now biased. Panel D assumes var(ξr

jwt) > 0, which
does not bias estimates of ρ. Panel E assumes that ξjwt is exogenous with respect to price, but ξjwt ≡ ξr

jwt; this prominence
endogeneity does not bias ρ̂. Panel F is like Panel A but replaces the eligibility instrument with the short-run correlation
between prominence and sales; the mismeasurement of prominence leads to an upward bias in the fraction of sophisticates.

strategy purges any endogenous variation in prominence status by projecting
it only on known variables (the intuition is the same as with an instrumental
variables strategy.)

• Panel F: Similar to Panel A, but we replace the eligibility ‘instrument’ with the
short run correlation between prominence and sales. The mismeasurement of
prominence leads to an upward bias in the share of sophisticated consumers.

To summarize, we find that our estimates are robust to prominence endogeneity,
and would detect price endogeneity that is constant over time. However, they are
biased if price endogeneity varies over time, and would be biased if we used the
observed, rather than the predicted, prominence dummy (which we do not).

D.4 Monte Carlo: Supply

We also verify our supply model by Monte Carlo simulations. Our exercise achieves
two goals. First, under our maintained assumptions, we can recover the correct
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fixed and both third- and first-party wholesale cost parameters. Second, if costs are
misspecified because there is unmodelled correlation between fixed and wholesale
costs, then – as expected – both fixed and wholesale cost parameter estimates are
biased.

Results are displayed in Table 13. Columns marked A fix all parameters at their
true values, except for the mean fixed cost parameter µF and the mean wholesale
cost parameters (µc, µc,Amz). Columns marked B allow all parameters to vary.
The columns (A1) and (B1) validate that we can recover the fixed and wholesale
parameters we impose. In columns (A2) and (B2), we estimate the model under
misspecified wholesale costs.

For exposition, consider a product t and a seller j. To simulate fixed and
wholesale costs, we first draw fixed cost “shocks” ϵF,t from a standard normal.
Next, we draw wholesale cost “shocks” following ϵc,jt|ϵF,t ∼ ΣϵF,t + (1−Σ)N(0, 1),
for some value of Σ in [0, 1]. The value of Σ is set to zero for columns marked 1,
and 0.5 for columns marked 2. Intuitively, a higher positive value of Σ means that
wholesale cost shocks are higher on products with higher fixed costs (i.e., fewer
entrants).

In columns (A1) and (B1), we find that our estimator delivers excellent point
estimates when the model is correctly specified, and the associated confidence
intervals are very tight around the truth. However, for the misspecified model,
if we fix all parameters other than (µF, µc, µc,Amz) at their true values, we see in
column (A2) that we obtain highly biased estimates for third-party wholesale costs
and somewhat biased estimates for mean fixed costs. If we permit all parameters
to vary, as in column (B2), both fixed and wholesale cost parameters are now
biased away from the truth.

E Out-of-Sample Fit

We display out-of-sample fit for the Buybox, demand, and supply respectively. In
each case, we perform an 80-20 train-test split: we train the model on 80% of the
data, then test it on the remaining 20%. On all fronts, we find that our models fit
the held-out data well.
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(A) (B)
Truth (A1) (A2) Truth (B1) (B2)

µF 4.647 4.655 4.462 4.647 4.660 4.746
(0.010) (0.007) (0.014) (0.016)

µF,M 1.921 1.921 1.920 1.853
(0.031) (0.033)

σF -0.049 -0.049 -0.021 0.305
(0.024) (0.014)

δc 0.777 0.777 0.770 0.780
(0.004) (0.004)

σc 0.156 0.156 0.157 0.099
(0.001) (0.001)

µc 2.258 2.267 4.955 2.258 2.395 2.895
(0.011) (0.014) (0.032) (0.063)

δc,AMZ 0.474 0.474 0.461 0.482
(0.007) (0.004)

σc,AMZ 0.117 0.117 0.147 0.004
(0.017) (0.015)

µc,AMZ 3.487 3.490 3.454 3.487 3.475 4.614
(0.033) (0.019) (0.065) (0.065)

Table 13: Monte Carlo of Supply Estimation.
Notes: This table provides results from a Monte Carlo exercise that tests our code which estimates fixed and wholesale
cost parameters. We generate a dataset by simulating markets from 47,249 products in our real data. Using upstream
demand parameters, the coefficients reported in (0), as well as simulated correlated shocks for fixed and wholesale cost
parameters, we generate the dependent variable under different assumptions about the correlation between fixed and
wholesale costs. First, fixed cost “shocks” ϵF,t are drawn from a standard normal, then wholesale cost “shocks” are drawn
ϵc,jt|ϵF,t ∼ ΣϵF,t + (1 − Σ)N(0, 1), for some value of Σ in [0, 1]. These shocks are then transformed into fixed costs via
Ft = (µF + µF,MzMSRP,t) exp(σFϵF,t), where zMSRP,t = ln MSRPt − T−1 ∑T

t=1 ln MSRPt. Wholesale costs are obtained via
cjt = (µc + δc × MSRPt)× exp(σcϵc,jt − σ2

c /2), and analogously for first-party offers. Panel A fixes all parameters except
the displayed parameters at their true values; Panel B allows all parameters to vary. Specifications A1 and B1 use data
simulated under the assumption of independent wholesale and fixed costs; the resulting estimates are close to the true
parameters. Specifications A2 and B2 simulate correlated wholesale and fixed costs; as expected, the estimates that our now
misspecified estimator yields in this case are biased.

E.1 Out-of-Sample Fit: Prominence and Demand

We analyze the fit of the demand and prominence models by comparing their
out-of-sample predictions to the data. To this end, we first estimate the models on
a sample of 80% of products. Then, for each product in the remaining 20%, we
predict (i) each offer’s probability of being promoted, and (ii) each observed offer’s
sales.43 We then compare these predictions to the data. While we could assess fit
on the moments that our maximum-likelihood estimation is implicitly targeting,
we could only miss these moments if the model was overfitting; we confirm in

43Note that predicted sales are a function of prominence assignments at the time of sale, which
we do not observe; we use the posterior probability of (not) being promoted given our model as
the weight on the predicted sales conditional on (not) being promoted.
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unreported tests that this is not the case, i.e., the fit on these moments is good. We
focus here instead on more substantive measures of fit.

Our results are Figures 7 (for prominence) and 8 (for sales). Both figures first
show a Hosmer-Lemeshow test that speaks to the calibration of the models, binning
observations by their predicted value of the outcome variable and comparing the
distribution of the outcome variable to the distribution of the predicted values.
We find that these predictions lie close to the 45-degree line, indicating that both
models are well-calibrated, with the possible exception of the demand model’s
slight tendency to under-predict sales of the lowest-selling offers. The excellent
calibration of the Buybox model is particularly reassuring given that, as we discuss
in Appendix D.3, the identification of the fraction of sophisticates in the demand
model relies on the calibration of the Buybox model.

The second panel shows the results of regressing (without any additional con-
trols) the predicted and actual outcomes on binary or binarized offer characteristics
(with the exception of "In Buybox?" which uses predicted prominence given that
the observed prominence assignment is mismeasured). We find that the models
are able to capture the relationship between the outcome variables and the offer
characteristics well. We note in particular that the impact of being in the presence
of an Amazon offer is matched well by the models.

Finally, the remaining panels try to assess whether our models correctly capture
the causal relationship between offer characteristics and prominence/sales. To this
end, we regress both model predictions and data on various offer characteristics
while controlling for offer fixed effects. If (i) the model is correctly specified and
(ii) temporal variation in offer characteristics is uncorrelated with the error term,
then the coefficient on the offer characteristics in the two regressions should be
approximately equal. Furthermore, this exercise allows us to verify that both
the data and the model capture intuitive patterns (e.g., that sales rapidly decline
as price increases beyond the minimum price on the market but decline more
slowly for further price increases). The models capture the relationship between
the outcome variables and the offer characteristics well. We note in particular
that, thanks to the nested-logit structure of the models, the relationship between
the number of merchants on a market and the probability of being promoted is
matched well by the models.
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Figure 7: Out of Sample Fit for Prominence Model.
Notes: This figure compares the prominence model’s out-of-sample predictions to the data. Panel (a) shows a Hosmer-
Lemeshow test, binning observations by predicted probability of being promoted and comparing to actual prominence
observations. Panel (b) shows how well the model captures the relationship between prominence assignment (i.e., Buybox
wins) and binary offer characteristics like FBA status; continuous characteristics are binarized by comparing to the median
value. The underlying regression includes just the dummy and no other controls. Panels (c)-(f) show results from regressing
the observed prominence dummy and predicted probabilities on various market- or observed offer characteristics while
controlling for offer- fixed effects. Panel (c) examines fit across markets with different numbers of competing merchants.
Panel (d) evaluates how well the model captures the relationship between an offer’s relative price position and its likelihood
of being promoted. Panels (e) and (f) repeat this exercise for feedback count and time to dispatch respectively. All standard
errors are clustered at the product level.
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Figure 8: Out of Sample Fit for Demand Model.
Notes: This figure compares out-of-sample predictions of our demand model to the data. Panel (a) shows a Hosmer-
Lemeshow test, binning observations by predicted sales and comparing to actual sales. Panel (b) shows how well the
model captures the relationship between sales and binary offer characteristics like FBA status; continuous characteristics are
binarized by comparing to the median value, except for "In Buybox?" which uses the predicted prominence given that the
observed prominence is mismeasured. The underlying regression includes just the dummy and no other controls. Panels
(c)-(f) show results from regressing actual sales and sales predictions on various market- or observed offer characteristics
while controlling for offer fixed effects. Panel (c) examines fit across markets with different numbers of competing merchants.
Panel (d) evaluates how well the model captures the relationship between an offer’s relative price position and its sales.
Panels (e) and (f) repeat this exercise for feedback count and time to dispatch respectively. All standard errors are clustered
at the product level.
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E.2 Out-of-Sample Fit: Supply

We analyze the fit of the supply model by comparing its out-of-sample predictions
of the price and entrant distribution to those in the data.

As for the demand model, we first estimate the supply model on a “training
set” comprising 80% of the products. Then, for each product in the remaining
20%, we simulate entry and pricing under the estimated parameters. Finally, we
compare the simulated number of entrants and prices to the data.

We show our results in Figure 9. We find that the model is able to replicate the
empirical distribution of entrants and prices.

(a) Entrant Distribution (b) Price Distribution

Figure 9: Out of Sample Fit for SMM Model.
Notes: This figure compares out-of-sample predictions of our entry model to the data. Panel (a) shows the model predicted
entrant distribution as an outline overlaid on the entrant distribution in the test data. Panel (b) shows the analogous price
distributions for the test data. The entry model is fitted on an 80% random sample of products; this model is then used to
simulate market outcomes on the remaining 20% of the data held out from the training set.

F Heterogeneity Analysis

To evaluate the heterogeneity of our results across various partitions of our data,
we estimate our model separately for each product category.

F.1 Heterogeneity: Prominence and Demand

In Table 14, we investigate whether the key parameters of our demand and
prominence models vary by (i) product category, or (ii) product characteristics.
To this end, we re-estimate prominence and demand models separately for each
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subset of the data defined by a heterogeneity dimension (first column) taking on
a particular value (second column).44 Instead of reporting estimates directly, we
report the following key implied parameters: Amazon’s prominence advantage (as
multiple of the FBA advantage) in Column (1), the price elasticity of prominence
in Column (2), Amazon’s price advantage in demand (as multiple of the FBA
advantage) in Column (3), the price elasticity of demand in Column (4), and the
percentage of sophisticated consumers in Column (5).

To stabilize the estimates, we fix the nesting parameter λ and the impact of
all characteristics other than price and being sold by Amazon at their full-sample
estimates as these parameters are poorly identified in smaller samples. To obtain
standard errors, we perform a parametric bootstrap.

Starting with heterogeneity across product categories, we find some evidence of
heterogeneity in both demand and prominence. In particular, Amazon’s demand
advantage is higher for products in the Pet, Baby and Office categories, and lower
for products in the Fashion, Sports and Books categories. Furthermore, there is a
tendency for categories with high demand advantage to have higher prominence
advantages, though the relationship is noisy. Overall, the pattern (high Amazon
advantages for goods needed quickly) suggests that Amazon offers arrive at the
customer’s doorstep faster in a way that is not captured by our dispatch time
variable – perhaps because Amazon offers qualify for Prime at a higher rate, or
because Amazon’s offers spend less time in transit even conditional on Prime
status.

Moving on to price elasticities, both prominence and demand are more elastic
for Food products, and less elastic for Office products, which makes sense if Office
products are mostly purchased by people spending their employer’s money.

Finally, regarding the fraction of sophisticated consumers, we find that con-
sumers are more likely to explore alternative offers especially when buying books
and health or beauty products. They are least likely to explore when buying
tools, sporting goods or office products. This could be driven by heterogeneity in
willingness to pay for faster shipping for books (and unwillingness to spend one’s
time to help one’s employer save money in the case of office products).

Moving on to binary product characteristics, we find that Amazon’s demand

44The predicted prominence probabilities required to estimate our demand model are also
re-estimated for each subset.
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advantage is higher for products with a lower MSRP – plausible, as this advantage
is implicitly expressed as a percentage of MSRP, and that percentage would be a
larger absolute amount for higher-priced products. The biggest difference when it
comes to the fraction of sophisticated consumers is that products with many offers
attract more sophisticated consumers – and these products also feature a much
elevated prominence price elasticity. Again, these findings are reasonable: there is
a higher payoff from examining all offers when there are more offers to examine,
and from Amazon’s perspective, there is no need to worry about incentivizing
entry of additional merchants when there are already many offers.

To conclude, we emphasize that this heterogeneity analysis should be inter-
preted with caution due to the convenience sample of products that underlies
our analysis. While we have good coverage of different kinds of sellers across
categories, once we zoom in on a particular category or heterogeneity dimension,
we are left with only a small number of products, limiting power. In particular, the
underlying estimates of the price/MSRP coefficient in demand, α, are not always
statistically distinguishable from zero. Furthermore, after conditioning on a het-
erogeneity dimension, the remaining products are not necessarily representative of
the population of products in that category or heterogeneity dimension. For both
these reasons, the results in this section and the next one should be interpreted
with caution.

F.2 Heterogeneity: Implications for Counterfactual Analyses

What do our findings suggest for the heterogeneous impacts of search guidance, as
well as potential antitrust remedies, across product categories? First, we re-estimate
the pricing and entry model in the body of the paper assuming the Buybox and
demand processes in each category are governed by the parameters recovered
in Panel A of Table 14.45 Next, we repeat the main counterfactual analyses from
Section 7. Finally, we display the effects of these interventions on consumer surplus
in the aggregate within category, as well as per product within that category.

The results are summarized in Table 15. The pooled consumer surplus results
are qualitatively similar to those of the main counterfactual: search guidance helps

45To stabilize SMM convergence, our indirect inference for first- and third-party wholesale prices
aims to match only the constant and standardized MSRP coefficients in their respective regressions
of offer prices on market characteristics.
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Prominence Demand
Dimension Value (1) (2) (3) (4) (5)

Category Baby 0.32 -22.90 2.84 -13.43 7.89
(0.21) (4.83) (0.41) (1.83) (3.01)

Category Beauty 0.15 -18.61 1.91 -14.06 23.88
(0.04) (0.68) (0.18) (0.66) (1.67)

Category Books 0.42 -21.92 0.56 -10.18 26.57
(0.05) (0.99) (0.75) (0.77) (6.71)

Category Fashion 0.59 -24.44 0.99 -17.69 4.88
(0.10) (1.36) (0.68) (0.78) (0.74)

Category Food 0.29 -31.18 2.19 -16.56 14.99
(0.09) (1.36) (0.23) (0.84) (2.98)

Category Health 0.35 -21.00 1.49 -15.27 22.74
(0.08) (1.07) (0.30) (0.95) (3.39)

Category Home 0.17 -19.26 1.92 -13.33 6.82
(0.04) (1.20) (0.21) (0.62) (0.95)

Category Office 0.84 -12.51 2.45 -9.80 8.87
(0.17) (1.40) (0.20) (0.97) (1.66)

Category Pet 1.07 -14.11 2.95 -10.49 10.13
(0.43) (2.22) (0.42) (1.22) (1.56)

Category Sports 0.27 -25.31 0.81 -18.08 3.28
(0.05) (1.48) (0.46) (1.02) (0.54)

Category Tools 0.48 -18.23 1.35 -13.25 4.89
(0.14) (1.39) (0.34) (0.84) (0.98)

Category Toys 0.95 -24.29 2.51 -12.64 11.08
(0.13) (0.92) (0.16) (0.49) (0.92)

Category Video Games 0.45 -23.88 2.32 -12.03 10.27
(0.53) (2.48) (0.47) (0.77) (2.19)

Panel A: Heterogeneity by Product Characteristics.

Prominence Demand
Dimension Value (1) (2) (3) (4) (5)

Durable No 0.33 -21.15 1.08 -14.32 5.79
(0.04) (0.73) (0.16) (0.37) (0.37)

Durable Yes 0.42 -21.53 1.15 -13.63 3.48
(0.04) (0.69) (0.17) (0.36) (0.37)

High item volume No 0.50 -19.29 1.39 -12.52 6.88
(0.05) (0.68) (0.14) (0.34) (0.46)

High item volume Yes 0.48 -22.82 0.96 -14.10 3.79
(0.04) (0.97) (0.22) (0.42) (0.43)

High msrp No 0.43 -20.19 1.51 -12.49 8.75
(0.04) (0.60) (0.14) (0.29) (0.59)

High msrp Yes 0.45 -23.80 0.75 -15.93 3.49
(0.04) (0.85) (0.22) (0.42) (0.26)

High num offers No 0.40 -15.45 1.07 -11.67 3.39
(0.04) (0.60) (0.15) (0.35) (0.21)

High num offers Yes 0.44 -27.64 1.84 -14.70 12.01
(0.04) (0.77) (0.14) (0.31) (0.80)

High package weight No 0.42 -20.94 0.68 -13.80 4.30
(0.04) (0.64) (0.19) (0.33) (0.30)

High package weight Yes 0.48 -20.96 1.35 -13.59 5.66
(0.04) (0.79) (0.16) (0.35) (0.43)

Working hours No 0.41 -20.82 1.19 -13.65 4.78
(0.04) (0.79) (0.12) (0.37) (0.27)

Working hours Yes 0.40 -21.81 1.09 -13.95 5.29
(0.03) (0.71) (0.12) (0.31) (0.28)

Panel B: Heterogeneity by Product Characteristics.

Table 14: Heterogeneity of Prominence and Demand Models
Notes: We re-estimate prominence and demand models separately for each subset of the data defined by a heterogeneity dimension (first
column) taking on a particular value (second column). Column (1) reports the Amazon advantage in the prominence algorithm (expressed
as a multiple of the FBA advantage). Column (2) reports the average price elasticity of prominence. Column (3) reports the Amazon
advantage in demand (again expressed as a multiple of the FBA advantage). Column (4) reports the price elasticity of demand (taking into
account the impact of prominence responding to price). Column (5) reports the percentage of sophisticated consumers. To dichotomize
products into durable and non-durable, we asked Claude Sonnet 3.5 to estimate the fraction of products sold in each category on Amazon
that are durable; we consider a category durable if the fraction is above 50%. The item volume refers to the product of the width, height and
length of the product. Working hours refer to 9AM to 5PM in Chicago, excluding weekends. All binarized variables are dichotomized at the
median value of the full sample unless otherwise indicated. Standard errors are clustered at the product level.
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consumers; softening price competition harms them; and handicapping Amazon
fails to deliver substantial consumer surplus gains. Henceforth, we focus on the
differential impacts by category. First, search guidance is most valuable to goods
in the Baby (33.4%), Fashion (23.1%), Video Games (13.1%), and Books (10.6%)
categories, though not for Office products (-1.0%). Second, making comparisons
on a per-product basis, handicapping Amazon may improve consumer surplus
for Office products (2.0%), but is unlikely to deliver substantial gains in any other
category. Finally, if Amazon were to soften price competition to extract more
seller fees, consumer surplus declines the most for products in the Office (-2.5%),
Beauty (-1.7%) and Health (-1.5%) categories, but may benefit consumers of Books
somewhat (2.2%).

As before, we caution against taking these results as precise estimates of
welfare impacts across categories, given our limited sales data and hence noisy
category-level consumer choice estimates.

Category N Value of Guidance Handicap Amazon Soften Pricing
Baby 529 33.4% 0.12% -0.43%

Beauty 4220 2.79% 0.33% -1.74%
Books 5676 10.64% -0.1% 2.18%

Fashion 12766 23.09% 0.02% 0.09%
Food 4259 2.06% 0.19% -1.11%

Health 2502 1.27% 0.61% -1.51%
Home 3393 2.77% 0.08% -0.81%
Office 1186 -0.96% 1.97% -2.42%

Pet Supplies 667 1.14% 0.42% -1.28%
Sports 3653 5.09% 0.06% -0.39%
Tools 1075 3.5% 0.44% -1.41%
Toys 6210 2.69% 0.43% -0.97%

Video Games 571 13.05% 0.2% -0.29%

Table 15: Heterogeneous Effects on Consumer Surplus (% Relative to Baseline)
Notes: We simulate counterfactuals separately for each subset of the data defined by a product category taking on a
particular value (first column). The number of products in that category, N, is also displayed (second column). After using
the prominence and demand estimates in Panel A of Table 14, we estimate an entry and pricing process as in the main text,
then simulate three main counterfactuals: the value of search guidance relative to if consumers sorted strongly on price, i.e.,
if the prominence algorithm had three times the price sensitivity and did not select on non-price characteristics (Column 3);
forbidding Amazon from promoting its own offer above and beyond what is predicted by our observables (Column 4); and
if Amazon halved its price coefficient to soften price competition (Column 5). All consumer surplus figures reported are
from the “Long-Run” scenario in the main text, where merchants adjust both pricing and entry decisions. Pooled consumer
surplus results are suppressed because they are qualitatively similar to those of the main counterfactual.

G Counterfactuals

G.1 Computing Counterfactual Outcomes

We compute a set of welfare and platform-wide quantities.
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• Welfare. Welfare on market t is the sum of consumer surplus to both unso-
phisticated and sophisticated agents; producer surplus; and the platform’s
intermediation fees.

– Consumer surplus to unsophisticated agents.

CSt,U = [(1 − ρ)× At]/αt × ∑
j∈Jt

rjt ln
[
exp(δjt) + exp(δ0t)

]
.

– Consumer surplus to sophisticated agents.

CSt,S = (ρ × At)/αt × ln

[
exp(δ0t) + [ ∑

j∈Jt

exp(δjt/λ)]λ
]

.

– Producer surplus. PSt = At ∑j∈Jt sjt × (ϕpjt − cjt).

– Platform intermediation fees. Feest = At(1 − ϕ)∑j∈Jt sjt pjt.

• Third-party mean sales per month. Sales = 1
T ∑T

t=1 At ∑j∈Jt sjt.

• Third-party mean price (as % of MSRP). p̄ = 1
T ∑T

t=1

[
1

Nt×msrpt
∑j∈Jt pjt

]
.

• Third-party mean minimum price (as % of MSRP). p̄min = 1
T ∑T

t=1

[
1

msrpt
minj∈Jt pjt

]
.

• Third-party mean cost (as % of MSRP). c̄ = 1
T ∑T

t=1

[
1

Nt×msrpt
∑j∈Jt cjt

]
.

• Third-party mean number of entrants. N̄t.

G.2 Is Amazon Self-Preferencing if Amazon Prices are Fixed?

In our paper, our leading counterfactual analyses assume that the price of the
Amazon offer, where it exists, is set to maximize short-run profits. However, one
could also take the view that the platform sets the price of its offers with some
long-run objective in mind: for instance, as a benchmark to encourage comparable
third-party offers to price more competitively or in an attempt to attract more
consumers to the platform. As discussed in the main text, such a long-run objective
is consistent with both criticisms of the company (Khan 2016) and statements by
the company’s leadership (Rose 2013).
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(a) Consumer Surplus (b) Price & Amazon Prom. Share

Figure 10: If Amazon does not adjust its prices, how much should it guide
consumers to its own offers?

Notes: The left panel shows the impact on consumer surplus as we vary the weight that Amazon’s prominence algorithm
places on Amazon’s own offers, holding fixed the price of the Amazon offer, where it exists. The right panel shows the
corresponding effects on prices and the average share of the Amazon offer in prominence, conditional on the Amazon
offer being present. The vertical dashed line represents the value of β̂r

Amazon/β̂r
FBA that maximizes the long-run consumer

surplus, while the vertical dotted line represents the Status Quo.

Therefore, we now assess the robustness of our result that Amazon is slightly
self-preferencing to the assumption that Amazon’s retail division sets prices to
maximize short-run profits. To this end, in Figure 10, we run the same counter-
factual analysis as in Figure 5, but now we assume that the price of the Amazon
offer is fixed at the Status Quo level. Under this alternative assumption, we find
that consumer surplus would be maximized by a much higher prominence weight
on Amazon’s own offers than in Section 7.3. Indeed, we find that Amazon is
insufficiently steering consumers towards its own offers in the Status Quo, and
hence that the platform is not self-preferencing. This result is driven by strong
consumer preferences for the Amazon offers, but also by their comparatively low
prices: as we see in Figure 10b, the Buybox-weighted price falls as we increase the
prominence weight on Amazon’s offers.

We emphasize that the difference between exogenous and endogenous pricing –
while it flips the answer to the question whether Amazon is self-preferencing in
the sense of harming consumers – is smaller than it may first appear: while we do
find self-preferencing in Section 7.3, we also find that the consumer surplus loss
from this self-preferencing is negligible.
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